Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons

Abstract

NEURONS develop a highly polarized morphology consisting of dendrites and a long axon. Both axons and dendrites contain microtubules and microtubule-associated proteins (MAPs) with characteristic structures1. Among MAPs, MAP2 is specifically expressed in dendrites2 whereas MAP2C and tau are abundant in the axon2–5. But the influence of MAP2, MAP2C and tau on the organization of microtubule domains in dendrites versus axons is unknown. Both MAP2 and tau induce microtubule bundle formation in fibroblasts after transfection of complementary DNAs6,7, and a long process resembling an axon is extended in Sf9 cells infected with recombinant baculovirus expressing tau8,9. We have now expressed MAP2 and MAP2C in Sf9 cells in order to compare their morphology and the arrangement of their microtubules to that found in Sf9 cells expressing tau. We report here that the spacing between microtubules depends on the MAP expressed: in cells expressing MAP2, the distance is similar to that found in dendrites, whereas the spacing between microtubules in cells expressing MAP2C or tau is similar to that found in axons.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hirokawa, N. in Neuronal Cytoskeleton (eds. R. D. Burgoyne) 5–74 (Wiley Liss, New York, 1991).

    Google Scholar 

  2. Bernhardt, R. & Matus, A. J. comp. Neurol. 226, 203–231 (1984).

    Article  CAS  Google Scholar 

  3. Binder, L. I., Frankfurter, A. & Rebhun, L. I. J. Cell Biol. 101, 1371–1378 (1985).

    Article  CAS  Google Scholar 

  4. Matus, A. A. Rev. Neurosci. 11, 29–44 (1988).

    Article  CAS  Google Scholar 

  5. Nunez, J. Trends Neurosci. 11, 477–479 (1988).

    Article  CAS  Google Scholar 

  6. Kanai, Y. et al. J. Cell Biol. 109, 1173–1184 (1989).

    Article  CAS  Google Scholar 

  7. Lewis, S. A., Ivanov, I. E., Lee, G. H. & Cowan, N. J. Nature 342, 498–505 (1989).

    Article  ADS  CAS  Google Scholar 

  8. Knops, J. et al. J. Cell Blol. 114, 725–733 (1991).

    Article  CAS  Google Scholar 

  9. Baas, P. W., Pienkowski, T. P. & Kosik, K. S. J. Cell Biol. 115, 1333–1344 (1991).

    Article  CAS  Google Scholar 

  10. Umeyama, T., Okabe, S., Kanai, Y. & Hirokawa, N. J. Cell Biol. (in the press).

  11. Takeuchi, M., Hisanaga, S., Umeyama, T. & Hirokawa, N. J. Neurochem. 58, 1510–1516 (1992).

    Article  CAS  Google Scholar 

  12. Goedert, M., Wischik, C. M., Crowther, R. A., Walker, J. E., & Klug, A. Proc. natn. Acad. Sci. U.S.A. 85, 4051–5055 (1988).

    Article  ADS  CAS  Google Scholar 

  13. Lee, G., Cowan, N. & Kirschner, M. W. Science 239, 285–288 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Aizawa, H. et al. J. biol. Chem. 263, 7703–7707 (1988).

    CAS  PubMed  Google Scholar 

  15. Goedert, M., Spillantini, M. G., Potier, M. C., Ulrich, J. & Crowther, R. A. EMBO J. 8, 393–399 (1989).

    Article  CAS  Google Scholar 

  16. Kosik, K. S., Orecchio, L. D., Bakalis, S. & Neve, R. L. Neuron 2, 1389–1397 (1989).

    Article  CAS  Google Scholar 

  17. Lee, G., Neve, R. L. & Kosik, K. S. Neuron 2, 1615–1624 (1989).

    Article  CAS  Google Scholar 

  18. Papandrikopoulou, A., Doll, T., Tucker, R. P., Garner, C. C. & Matus, A. Nature 340, 650–652 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Vallee, R. Proc. natn. Acad. Sci. U.S.A. 77, 3206–3210 (1980).

    Article  ADS  CAS  Google Scholar 

  20. Heidemann, S. R., Landers, J. M. & Hamborg, M. A. J. Cell Biol. 91, 661–665 (1981).

    Article  CAS  Google Scholar 

  21. Baas, P. W., Deitch, J. S., Black, M. M. & Banker, G. A. Proc. natn. Acad. Sci. U.S.A. 85, 8335–8339 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Kanai, Y., Chen, J. & Hirokawa, N. EMBO J. 11, 3953–3962 (1992).

    Article  CAS  Google Scholar 

  23. Wilie, H. et al. J. struct. Biol. 108, 49–61 (1992).

    Article  Google Scholar 

  24. Webb, N. R. & Summers, M. D. MAXBAC™: Baculovirus Expression System. A Manual of Methods for Baculovirus Vectors and Insect Cell Culture Procedures (Invitrogen, San Diego, 1990).

    Google Scholar 

  25. Sato-Yoshitake, R., Shiomura, Y., Miyasaka, H. & Hirokawa, N. Neutron 3, 229–238 (1989).

    CAS  Google Scholar 

  26. Hirokawa, N. J. Cell Biol. 94, 129–142 (1982).

    Article  CAS  Google Scholar 

  27. Hirokawa, N., Shiomura, Y. & Okabe, S. J. Cell Biol. 107, 1449–1461 (1988).

    Article  CAS  Google Scholar 

  28. Hirokawa, N., Hisanaga, S. & Shiomura, Y. J. Neurosci. 8, 285–306 (1988).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, J., Kanai, Y., Cowan, N. et al. Projection domains of MAP2 and tau determine spacings between microtubules in dendrites and axons. Nature 360, 674–677 (1992). https://doi.org/10.1038/360674a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360674a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing