Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 24 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 360, 571 - 573 (10 December 1992); doi:10.1038/360571a0

Removal of sulphur from the marine boundary layer by ozone oxidation in sea-salt aerosols

H. Sievering*, J. Boatman, E. Gorman*, Y. Kim, L. Anderson*, G. Ennis*, M. Luria & S. Pandis§

* Center for Environmental Sciences and Department of Physics, Box 136, University of Colorado-Denver, PO Box 173364, Denver, Colorado 80217, USA
Aerosol Research Section, National Oceanic and Atmospheric Administration, Boulder, Colorado 80303, USA
Environmental Sciences Division, The Hebrew University, Jerusalem, Israel
§ Department of Chemical Engineering, California Institute of Technology, Pasadena, California, USA

THE oxidation of sulphur dioxide to sulphate in the marine boundary layer (MBL) is an important pathway in the global sulphur cycle. Oxidation by ozone in the aqueous phase is an important process in cloud droplets1 but has not generally been thought to be significant in the clear air of the MBL. Yet the lower part of the MBL contains abundant sea-salt aerosol particles, which are largely water of sufficiently high pH (ref. 2) to support ozone oxidation of SO2 to sulphate. We have argued previously3 that 5–25% of the total non-sea-salt sulphate (n.s.s. SO2− 4) observed in the MBL may be formed by this mechanism; here we assess its contribution to the cycling of sulphur in (and particularly its removal from) the MBL. We show that, owing to the effects of mass transfer, the n.s.s. SO2− 4 so generated will be predominantly associated with particles of 2–9 μm diameter, and will accordingly dry-deposit at a rapid rate. Because part of the dimethyl sulphide (DMS) emitted by marine organisms is converted to SO2 in the MBL, this additional removal pathway for sulphur may markedly reduce the proposed feedback4 between greenhouse warming, oceanic DMS emissions and sulphate haze albedo.

------------------

References

1. Seinfeld, J. H. Atmospheric Chemistry and Physics of Air Pollution (Wiley, New York 1986).
2. Winkler, P. in Chemistry of Multiphase Atmospheric Systems (ed. Jaeschke, W.) 269−298 (Springer, Heidelberg, 1986).
3. Sievering, H. et al. Atmos. Envir. A25, 1479−1487 (1991).
4. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655−661 (1987). | Article | ISI | ChemPort |
5. Gravenhorst, G. Atmos. Envir. 12, 707−713 (1978). | Article | ChemPort |
6. Prospero, J. M. & Savoie, D. L. AEROCE Scientific Results from Phase I, 1988−90 (Rossenstiel School of Marine & Atmos. Sci., Univ. of Miami, 1991).
7. Sievering H., Ennis, G. & Gorman, E. Global biogeochem. Cycles 4, 395−405 (1990). | ChemPort |
8. Pszenny, A. A. P., Artz, R. S., Boatman, J. F. & Galloway, J. N. Global biogeochem. Cycles 4, 121−132 (1990). | ChemPort |
9. Kim, Y., Sievering, H. & Boatman, J. F. Global biogeochem. Cycles 4, 165−178 (1990).
10. Luria, M. and Sievering, H. Atmos. Envir. A25, 1489−1496 (1991).
11. Hoppel, W. A., Fitzgerald, J. W., Frick, G. M., Larson, R. E. & Mack, E. J. J. geophys. Res. 95, 3659−3686 (1990). | ISI |
12. Sievering, H. et al. in Proc. 5th IPSASEP Conf. Richland, July, 1991 (eds Schwartz, S. & Slinn, W. G. N.) (in the press).
13. Schwartz, S. in Chemistry of Multiphase Atmospheric Systems (ed. Jaeschke, W.) 415−471 (Springer, Heidelberg, 1986).
14. Sahni, D. J. nucl. Energy 20, 915−920 (1966). | ChemPort |
15. Luria, M. et al. Global biogeochem. Cycles 4, 381−394 (1990). | ChemPort |
16. Ray, J. D., Van Valin, C. C. Luria, M. & Boatman, J. F. Global biogeochem. Cycles 4, 201−214 (1990). | ChemPort |
17. Fitzgerald, J. W. Appl. Optics 28, 3534−3538 (1989).
18. Hänel, F. Adv. Geophys. 19, 73−188 (1976).
19. Gorman, E. Mass Transfer Limitation of S(IV) and Ozone in Coarse-Mode Aerosol Particles (Center for Environ. Sciences, Univ. of Colorado, 1992).
20. Slinn, W. G. N. in Precip. Scav., Dry Deposition, and Resusp., Vol. 2 (eds Pruppacher, H. R., Semonin, R. G. & Slinn, W. G. N.) 1361−1416 (Elsevier, New York 1983).
21. Chameides W. L. & Stetson, A. W. J. geophys. Res. (in the press).
22. Kopcewicz, B. et al. Atmos. Res. 26, 245−271 (1991). | ChemPort |
23. Andreae, M. O. et al. Science 232, 1620−1623 (1986). | ISI | ChemPort |
24. Sievering, H. J. geophys. Res. 89, 9679−9681 (1984). | ChemPort |
25. Slinn, S. A. & Slinn, W. G. N. Atmos. Envir. 14, 1013−1016 (1980). | Article |
26. Luria, M. et al. Atmos. Envir. 23, 139−147 (1989). | Article | ChemPort |
27. Leck, G. & Rodhe, H. J. atmos. Chem. 12, 63−86 (1991). | Article |
28. Blanchard, D. & Woodcock, A. H. N. Y. Acad. Sci. 338, 330−347 (1980).
29. Zhuang, G., Yi, Z., Duce, R. A. & Brown, P. Nature 355, 537−539 (1992). | Article | ChemPort |



© 1992 Nature Publishing Group
Privacy Policy