Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Drosophila wingless generates cell type diversity among engrailed expressing cells

Abstract

DURING embryogenesis, body pattern is established in a stepwise process1. After specification of the body axis, the embryo is subdivided into smaller units. Within these units, a diverse array of cell types is then generated. The subdivisions of the Drosophila embryo, called parasegments2, are defined by the interface between cells expressing the homeoprotein Engrailed and cells expressing the secreted protein Wingless3–5. We have examined the generation of cell-type diversity within parasegments by focusing on the choice of cell fate made by the engrailed (en)-expressing cells. These cells differentiate as one of two alternative cell types6. We report here that this choice is mediated by wingless (wg), in a function distinct from its early role maintaining en expression7,8. Thus, en cells exhibit different responses to the wg signal at different developmental stages. Early wg input stabilizes the subdivision of the body axis by maintaining en expression, whereas later input generates cell-type diversity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Slack, J. M. W. From Egg to Embryo: Regional Specification in Early Development 2nd edn (Cambridge Univ. Press, Cambridge, 1991).

    Book  Google Scholar 

  2. Martinez Arias, A. & Lawrence, P. A. Nature 313, 639–642 (1985).

    Article  CAS  ADS  PubMed  Google Scholar 

  3. Rijsewijk, F. et al. Cell 50, 649–657 (1987).

    Article  CAS  PubMed  Google Scholar 

  4. van den Heuvel, M., Nusse, R., Johnston, P. & Lawrence, P. A. Cell 59, 739–749 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Lawrence, P. A. & Johnston, P. Development 105, 761–767 (1989).

    CAS  PubMed  Google Scholar 

  6. Hama, C., Zehra, A. & Kornberg, T. B. Genes Dev. 4, 1079–1093 (1990).

    Article  CAS  PubMed  Google Scholar 

  7. DiNardo, S., Sher, E., Heemskerk-Jongens, J., Kassis, J. & O'Farrell, P. H. Nature 332, 604–609 (1988).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  8. Martinez Arias, A., Baker, N. E. & Ingham, P. W. Development 103, 157–170 (1988).

    CAS  PubMed  Google Scholar 

  9. Lohs-Schardin, M., Cremer, C. & Nüsslein-Volhard, C. Devl Biol. 73, 239–255 (1979).

    Article  CAS  Google Scholar 

  10. Kassis, J. A., Vansickle, E. D. & Sensabaugh, S. M. Genetics 128, 751–761 (1991).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Bejsovec, A. & Martinez Arias, A. Development 113, 471–485 (1991).

    CAS  PubMed  Google Scholar 

  12. Baker, N. E. Devl Biol. 125, 96–108 (1988).

    Article  CAS  Google Scholar 

  13. Baker, N. E. EMBO J. 6, 1765–1773 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Jurgens, G., Wiescriaus, E., Nüsslein-Volhard, C. & Kluding, H. Willhelm Roux Arch. Devl Biol. 193, 283–295 (1984).

    Article  CAS  Google Scholar 

  15. Hillman, R. & Lesnik, L. H. J. Morph. 131, 383–396 (1970).

    Article  Google Scholar 

  16. Heemskerk, J., DiNardo, S., Kostriken, R. & O'Farrell, P. H. Nature 352, 404–352 (1991).

    Article  CAS  ADS  PubMed  PubMed Central  Google Scholar 

  17. McMahon, A. P., Joyner, A. L., Bradley, A. & McMahon, J. A. Cell 69, 581–595 (1992).

    Article  CAS  PubMed  Google Scholar 

  18. Gonzalez, F., Swales, L., Bejsovec, A., Skaer, H. & Martinez Aras, A. Mechanisms Dev. 35, 43–54 (1991).

    Article  CAS  PubMed  Google Scholar 

  19. Nüsslein-Volhard, C., Wieschaus, E. & Kluding, H. Willhelm Roux Arch. Devl Biol. 193, 267–282 (1984).

    Article  Google Scholar 

  20. Hiromi, Y., Kuroiwa, A. & Gehring, W. J. Cell 43, 603–613 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Tautz, D. & Pfeifle, C. Chromosoma 98, 81–85 (1989).

    Article  CAS  PubMed  Google Scholar 

  22. Campos-Ortega, J. A. & Hartenstein, V. The Embryonic Development of Drosphila melanogaster (Springer, Berlin, 1985).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dougan, S., DiNardo, S. Drosophila wingless generates cell type diversity among engrailed expressing cells. Nature 360, 347–350 (1992). https://doi.org/10.1038/360347a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360347a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing