Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Electron density fluctuations in the local interstellar bubble

Abstract

THE interstellar medium in our vicinity forms an elongated cavity of X-ray-emitting gas, extending up to 200 pc from the Sun1,2. The gas inside this local bubble is very hot ( 106 K) and tenuous (electron density ne ≈ 0.005 cm−3), and is typical of material in the coronal phase of the interstellar medium, thought to occur when hot stars or supernovae blow out holes in cooler and denser interstellar gas. Little is known about turbulent density fluctuations in the coronal gas, but its physical state is important in understanding cosmic ray confinement and the energy balance of interstellar material, as well as the scattering of radio emission from compact sources3,4. To probe turbulence in the local interstellar medium, we have made scintillation measurements at 50 MHz (6 m wavelength) of emission from the nearby pulsar 0950 + 08, which happens to lie near the edge of the local bubble. From the scintillation bandwidth we deduce the amplitude of the electron-density fluctuation spectrum in the coronal gas alone, and find it to be an order of magnitude lower than for any previously measured interstellar line of sight. We conclude that the interior of the bubble is relatively quiescent and that high levels of plasma turbulence—if they exist—must be localized to the cavity boundary.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cox, D. P. & Reynolds, R. J. A. Rev. Astr. Astrophys. 25, 303–344 (1987).

    Article  ADS  CAS  Google Scholar 

  2. McCammon, D. & Sanders, W. T. A. Rev. Astr. Astrophys. 28, 657–688 (1990).

    Article  ADS  CAS  Google Scholar 

  3. Cesarsky, C. J. A. Rev. Astr. Astrophys. 18, 289–320 (1980).

    Article  ADS  CAS  Google Scholar 

  4. Spangler, S. R. Astrophys. J. 376, 540–555 (1991).

    Article  ADS  Google Scholar 

  5. Rickett, B. J. A. Rev. Astr. Astrophys. 28, 561 (1990).

    Article  ADS  Google Scholar 

  6. Phillips, J. A. & Wolszczan, A. Astrophys. J. 382, L27 (1991).

    Article  ADS  Google Scholar 

  7. Cordes, J. M., Spangler, S. R., Weisberg, J. M. & Clifton, T. R. in Radio Wave Scattering in the Interstellar Medium (eds Cordes, J. M., Rickett, B. J. & Backer, D. C.) 180–184 (American Institute of Physics, New York, 1988).

    Google Scholar 

  8. Cordes, J. M., Weisberg, J. M. & Boriakoff, V. Astrophys. J. 288, 221–247 (1985).

    Article  ADS  CAS  Google Scholar 

  9. Moran, J. M., Rodriguez, L. R., Green, B. & Backer, D. C. Astrophys. J. 348, 147–152 (1989).

    Article  ADS  Google Scholar 

  10. Gwinn, C. R., Taylor, J. H., Weisberg, J. M. & Rawlings, L. A. Astr. J. 91, 338–342 (1986).

    Article  ADS  CAS  Google Scholar 

  11. Reynolds, R. J. Astrophys. J. 348, 153–160 (1990).

    Article  ADS  CAS  Google Scholar 

  12. Snowden, S. L., Cox, D. P., McCammon, D. & Sanders, W. T. Astrophys. J. 354, 211–219 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Frisch, P. C. & York, D. G. Astrophys. J. 271, L59–63 (1983).

    Article  ADS  CAS  Google Scholar 

  14. Paresce, F. Astr. J. 89, 1022–1037 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Roberts, J. A. & Ables, J. G. Mon. Not. R. astr. Soc. 201, 1119–1138 (1982).

    Article  ADS  Google Scholar 

  16. Hajivassiliou, C. A. Nature 355, 232–234 (1992).

    Article  ADS  Google Scholar 

  17. Cordes, J. M., Weisberg, J. M., Frail, D. A., Spangler, S. R. & Ryan, M. Nature 354, 121–124 (1991).

    Article  ADS  Google Scholar 

  18. Ikeuchi, S., Habe, A. & Tanaka, Y. D. Mon. Not. R. astr. Soc. 207, 909–927 (1984).

    Article  ADS  Google Scholar 

  19. Phillips, J. A. & Wolszczan, A. Astrophys. J. 385, 273–281 (1992).

    Article  ADS  Google Scholar 

  20. Cordes, J. M., Wolszczan, A., Dewey, R. J., Blaskiewicz, M. & Stinebring, D. R. Astrophys. J. 349, 245–261 (1990).

    Article  ADS  Google Scholar 

  21. Spangler, S. R. in Radio Wave Scattering in the interstellar medium (eds Cordes, J. M., Ricket, B. J. & Backer, D. C.) 66–69 (American Institute of Physics, New York, 1988).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Phillips, J., Clegg, A. Electron density fluctuations in the local interstellar bubble. Nature 360, 137–139 (1992). https://doi.org/10.1038/360137a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/360137a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing