Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The spectrum of cosmological density fluctuations and nature of dark matter

Abstract

COSMIC structure is thought to have arisen by the gravitational amplification of small density fluctuations in the early Universe. The evolution of fluctuations with specified magnitude and spectrum is controlled by a few fundamental parameters: the cosmic density Ω, the cosmological constant Λ, and the relative contributions of radiation and of dark and visible matter to the density of the Universe. Maps and statistical descriptions of the large-scale distribution of galaxies, from the QDOT IRAS redshift survey1–7, along with the COBE measurements of the microwave background fluctuations8,9 have recently transformed our understanding of large-scale structure, for which the growth of fluctuations is linear and well understood. These two sets of data effectively determine the density fluctuation spectrum in the present Universe on scales from 10 to 1,000 Mpc. Here we examine an array of structure formation models, and show that most are ruled out by the COBE and QDOT observations. We find only one completely satisfactory model, in which the Universe has density Ω = 1, with 69% in the form of cold dark matter, 30% provided by hot dark matter in the form of a stable neutrino with mass 7.5 eV, and 1% baryonic. Certain 'grand unified theories'10,11 may provide a physical basis for such, hybrid models. A Hubble constant of 50 km s−1 Mpc−1 is preferred to one of 100.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rowan-Robinson, M. et al. Mon. Not. R. astr. Soc. 247, 1–18 (1990).

    ADS  Google Scholar 

  2. Efstathiou, G. et al. Mon. Not. R. astr. Soc. 247, 10p–14p (1990).

    ADS  Google Scholar 

  3. Saunders, W. et al. Nature 349, 32–38 (1991).

    Article  ADS  Google Scholar 

  4. Kaiser, N. et al. Mon. Not. R. astr. Soc. 252, 1–12 (1991).

    Article  ADS  Google Scholar 

  5. Moore, B. et al. Mon. Not. R. astr. Soc. 256, 471–499 (1991).

    Google Scholar 

  6. Saunders, W., Rowan-Robinson, M. & Lawrence, A. Mon. Not. R. astr. Soc. (in the press).

  7. Taylor, A. N. & Rowan-Robinson, M. Mon. Not. R. astr. Soc. (submitted).

  8. Wright, E. L. et al. Astrophys. J. (in the press).

  9. Smoot, G. F. et al. Astrophys. J. (submitted).

  10. Shafi, Q. & Stecker, F. W. Phys. Rev. Lett. 53, 1292–1295 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Schaefer, R. K., Shafi, Q. & Stecker, F. W. Astrophys. J. 347, 575–589 (1989).

    Article  ADS  CAS  Google Scholar 

  12. Sachs, R. K. & Wolfe, A. M. Astrophys. J. 147, 73–80 (1967).

    Article  ADS  Google Scholar 

  13. Abramowitz, M. & Stegun, I. A. Handbook of Mathematical Functions (Dover, New York, 1965).

    MATH  Google Scholar 

  14. Hawking, S. W. Phys. Lett. B115, 295–297 (1982).

    Article  Google Scholar 

  15. Starobinsky, A. A. Phys. Lett. B117, 175–178 (1982).

    Article  Google Scholar 

  16. Fukugita, M. & Kawasaki, M. Astrophys. J. 353, 384–398 (1990).

    Article  ADS  CAS  Google Scholar 

  17. Kaiser, N. Astrophys. J. 284, L9–L12 (1984).

    Article  ADS  Google Scholar 

  18. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. Astrophys. J. 292, 371–394 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Bardeen, J. M., Bond, J. R., Kaiser, N. & Szalay, A. S. Astrophys. J. 304, 15–61 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Peacock, J. A. Mon. Not. R. astr. Soc. 253, lp–5p (1991).

    Article  Google Scholar 

  21. Taylor, A. N. thesis, Univ. London (1992).

  22. Kaiser, N. Mon. Not. R. astr. Soc. 227, 1–21 (1987).

    Article  ADS  Google Scholar 

  23. Maddox, S. J., Efstathiou, G., Sutherland, W. J. & Loveday, J. Mon. Not. R. astr. Soc. 242, 43p–46p (1990).

    Article  ADS  Google Scholar 

  24. Peacock, J. A. & Nicholson, D. Mon. Not. R. astr. Soc. 253, 307–319 (1991).

    Article  ADS  Google Scholar 

  25. Bertschinger, E., Dekel, A., Faber, S. M., Dressler, D. & Burstein, D. Astrophys. J. 364, 370–395 (1990).

    Article  ADS  Google Scholar 

  26. Harrison, E. R. Phys. Rev. D1, 2726–2731 (1970).

    Article  ADS  Google Scholar 

  27. Zeldovich, Y. B. Mon. Not. R. astr. Soc. 160, lp–3p (1972).

    Article  Google Scholar 

  28. Holtzmann, J. A. Astrophys. J. 71, 1–24 (1989).

    Article  ADS  Google Scholar 

  29. Strauss, M., Davis, M., Yahil, A. & Huchra, J. P. Astrophys. J. 361, 49–62 (1990).

    Article  ADS  Google Scholar 

  30. Strauss, M., Yahil, A., Davis, M., Huchra, J. P. & Fisher, K. Astrophys. J. (in the press).

  31. Turok, N. in Proc. Nobel Symp. 79 (eds Nilsson, J. S., Gustafsson, B. & Shaperstaw, B. S.) Phys. Script. T36, 135–146 (1991).

    Google Scholar 

  32. Efstathiou, G. & Bond, J. R. Mon. Not. R. astr. Soc. 218, 103–121 (1986).

    Article  ADS  Google Scholar 

  33. White, S. D. M., Frenk, C. S. & Davis, M. Astrophys. J. 274, L1–L5 (1983).

    Article  ADS  CAS  Google Scholar 

  34. Efstathiou, G., Sutherland, W. J. & Maddox, S. J. Nature 348, 705–707 (1990).

    Article  ADS  Google Scholar 

  35. Efstathiou, G., Bond, J. R. & White, S. D. M. Mon. Not. R. astr. Soc. (submitted).

  36. Carlberg, R. G., Couchman, H. M. P. & Thomas, P. A. Astrophys. J. 352, L29–L32 (1990).

    Article  ADS  Google Scholar 

  37. Couchman, H. M. P. & Carlberg, R. G. Astrophys. J. 389, 453–463 (1992).

    Article  ADS  Google Scholar 

  38. Kolb, E. W. & Turner, M. S. The Early Universe (Addison-Wesley, Redwood City, California, 1990).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Taylor, A., Rowan-Robinson, M. The spectrum of cosmological density fluctuations and nature of dark matter. Nature 359, 396–399 (1992). https://doi.org/10.1038/359396a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/359396a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing