Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 25 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 359, 226 - 228 (17 September 1992); doi:10.1038/359226a0

Susceptibility of the early Earth to irreversible glaciation caused by carbon dioxide clouds

Ken Caldeira & James F. Kasting

Earth System Science Center & Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16802, USA

SIMPLE energy-balance climate models of the Budyko/Sellers type1,2 predict that a small (2–5%) decrease in solar output could result in runaway glaciation on the Earth. But solar fluxes 25–30% lower early in the Earth's history3,4 apparently did not lead to this result. One currently favoured explanation is that high partial pressures of carbon dioxide, caused by higher volcanic outgassing rates and/or slower rates of silicate weathering, created a large enough greenhouse effect to keep the planet warm5–7. This does not resolve the problem of climate stability, however, because as we argue here, the oceans can freeze much more quickly than CO2 can accumulate in the atmosphere. Had such a transient global glaciation occurred in the distant past when solar luminosity was low, it might have been irreversible because of the formation of highly reflective CO2 clouds, similar to those encountered in climate simulations of early Mars8. Our simulations of the early Earth, incorporating the possible formation of such clouds, suggest that the Earth might not be habitable today had it not been warm during the first part of its history.

------------------

References

1. Budyko, M. I. Tellus 21, 611−619 (1969). | ISI |
2. Sellers, W. D. J. appl. Met. 8, 392−400 (1969). | Article |
3. Gough, D. O. Solar Phys. 74, 21−34 (1981). | Article | ChemPort |
4. Sagan, C. & Mullen, G. Science 177, 52−56 (1972). | ISI | ChemPort |
5. Owen, T., Cess, R. D. & Ramanathan, V. Nature 277, 640−642 (1979). | ISI | ChemPort |
6. Walker, J. C. G., Hays, P. B. & Kasting, J. F. J. geophys. Res. 86, 9776−9782 (1981). | ISI | ChemPort |
7. Marshall, H. G., Walker, J. C. G. & Kuhn, W. R. J. geophys. Res. 93, 791−801 (1988). | ChemPort |
8. Kasting, J. F. Icarus 94, 1−13 (1991). | Article | PubMed | ISI | ChemPort |
9. Allart, J. H., in The Early History of the Earth (ed. Windley, B. F.) 177−189 (Wiley, New York, 1976).
10. Worsley, T. R. & Kidder, D. L. Geology 19, 1161−1164 (1992).
11. Walter, M. Am. Scient. 67, 142 (1979).
12. McWilliams, M. O. & McElhinney, M. W. J. Geol. 88, 1−26 (1980). | ISI | ChemPort |
13. Hambrey, M. J. & Harland, W. B. Palaeogeogr. Palaeoclimatol. Palaeoecol. 51, 255−272 (1985). | Article |
14. Sundquist, E. T. Quat. Sci. Rev. 10, 283−296 (1991). | Article |
15. Cahalan, R. F. & North, G. R. J. atmos. Sci. 36, 1178−1188 (1979). | Article |
16. Holland, H. D. The Chemistry of the Atmosphere and Oceans (Wiley, New York, 1978).
17. Kasting, J. F., Whitmire, D. P. & Reynolds, R. T. Icarus (in the press).
18. Warren, S. G. Appl. Opt. 25, 2650−2674 (1986). | ChemPort |
19. Kiehl, J. T. & Dickenson, R. E. J. geophys. Res. 92, 2991−2998 (1986).
20. Kasting, J. F. & Ackerman, T. P. Science 234, 1383−1385 (1986). | PubMed | ChemPort |
21. North, G. R., Cahalan, R. F. & Coakley, J. A. Rev. Geophys. 19, 91−121 (1981).
22. North, G. R. & Coakley, J. A. J. atmos. Sci. 36, 1189−1204 (1979). | Article | ISI |
23. Rossow, W. B., Henderson-Sellers, A. & Weinrich, S. K. Science 217, 1245−1247 (1982). | ISI | ChemPort |



© 1992 Nature Publishing Group
Privacy Policy