Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Monday 23 October 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 357, 315 - 318 (28 May 1992); doi:10.1038/357315a0

A sequential-decision strategy for abating climate change

James K. Hammitt*, Robert J. Lempert* & Michael E. Schlesinger

*RAND, 1700 Main Street, Santa Monica, California 90407-2138, USA
Department of Atmospheric Sciences, University of Illinois at Urbana-Champaign, 105 South Gregory Avenue, Urbana, Illinois 61801, USA

CURRENT debate on policies for limiting climate change due to greenhouse-gas emissions focuses on whether to take action now or later, and on how stringent any emissions reductions should be in the near and long term. Any reductions policies implemented now will need to be revised later as scientific understanding of climate change improves. Here we consider the effects of a sequential-decision strategy (Fig. 1) consisting of a near-term period (1992–2002) during which either moderate emissions reductions (achieved by energy conservation only) or aggressive reductions (energy conservation coupled with switching to other fuel sources) are begun, and a subsequent long-term period during which a least-cost abatement policy is followed to limit global mean temperature change to an optimal target ΔT *. For each policy we calculate the global mean surface temperature change ΔT(t) using a simple climate/ocean model for climate sensitivities ΔT 2x. (the response to doubled CO2, concentrations) of 4.5,2.5,1.5 and 0.5 °C. The policy beginning with moderate reductions is less expensive than that with aggressive reductions if ΔT *>2.9, 2.1, 1.5 and 0.9 °C respectively; otherwise, the aggressive-reductions policy is cheaper. We suggest that this approach should assist in choosing realistic targets and in determining how best to implement emissions reductions in the short and long term.



1. Rijsberman, F. R. & Swart, R. J. Targets and Indicators of Climatic Change (Stockholm Environment Institute, 1990).
2. Wirth, D. A. & Lashof, D. A. Ambio 19, 305−310 (1990).
3. Hammitt, J. K. & Lempert, R. J. in Proc. Conf. Global Climate Change: Los Alamos National Laboratory, October 21−24, 1991 (eds Rosen, L. & Glasser, R.) (Am. Inst. Phys., in the press).
4. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change: The IPCC Scientific Assessment (Cambridge Univ. Press, 1990).
5. Hafele, W. (ed.) Energy in a Finite World: A Global Systems Analysis (Ballinger, Cambridge, Massachusetts, 1981).
6. Fisher, J. C. & Pry, R. H. Simple Substitution Model of Technological Change, General Electric Co. Res. Dev. Center Rep. 70-C-215 (Schenectady, New York, 1970).
7. Maier-Reimer, E. & Hasselmann, K. Clim. Dynam. 2, 63−90 (1987).
8. Schlesinger, M. E. & Jiang, X. Nature 350, 219−221 (1991). | Article |
9. Lindzen, R. S. Bull. Am. met. Soc. 71, 288−299 (1990).
10. Hansen, J. & Lebedeff, S. J. geophys. Res. 92, 13345−13372 (1987). | ISI |
11. Jones, P. D., Wigley, T. M. L. & Wright, P. B. Nature 322, 430−434 (1986). | Article |
12. National Academy of Sciences Policy Implications of Greenhouse Warming (National Academy, Washington, DC, 1991).
13. Office of Technology Assessment, US Congress Changing by Degrees: Steps to Reduce Greenhouse Gases. OTA-O-482 (Washington, DC, 1991).
14. Fickett, A. P., Gellings, C. W. & Lovins, A. B. Scient. Am. 263, 64−74 (1990).
15. Office of Technology Assessment, U.S. Congress New Electric Power Technologies, OTA-E-246 (Washington, DC, 1985).
16. Manne, A. S. & Richels, R. G. Energy J. 12, 87−108 (1991).
17. Nordhaus, W. D. Energy J. 12, 37−65 (1991).
18. Ausubel, J. H. Nature 350, 649−652 (1991). | Article |

© 1992 Nature Publishing Group
Privacy Policy