Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor

Abstract

METHANE is a greenhouse gas whose concentration in the atmosphere is increasing1–3. Much of this methane is derived from the metabolism of methane-generating (methanogenic) bacteria4,5 and over the past two decades much has been learned about the ecology of methanogens; specific inhibitors of methanogenesis, such as 2-bromoethanesulphonic acid, have proved useful in this regard6. In contrast, although much is known about the biochemistry of methane-oxidizing (methanotrophic) bacteria7, ecological investigations have been hampered by the lack of an analogous specific inhibitor6. Methanotrophs limit the flux of methane to the atmosphere from sediments8,9 and consume atmospheric methane10, but the quantitative importance of methanotrophy in the global methane budget is not well known5. Methylfluoride (CH3F) is known to inhibit oxygen consumption by Methylococcus capsu-latus11, and to inhibit the oxidation of 14CH4 to 14CO2 by endosymbionts in mussel gill tissues12. Here we report that methylfluoride (MF) inhibits the oxidation of methane by methane monooxy-genase, and by using methylfluoride in field investigations, we find that methanotrophic bacteria can consume more than 90% of the methane potentially available.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Rasmussen, R. A. & Khalil, M. A. K. J. geophys. Res. 89, 11599–11605 (1984).

    Article  ADS  CAS  Google Scholar 

  2. Stauffer, B. et al. Science 229, 1386–1388 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Blake, D. R. & Rowland, F. S. Science 239, 1129–1131 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Wahlen, M. et al. Science 245, 286–290 (1989).

    Article  ADS  CAS  Google Scholar 

  5. Cicerone, R. J. & Oremland, R. S. Global biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Oremland, R. S. & Capone, D. G. Adv. microb. Ecol. 10, 285–383 (1988).

    Article  CAS  Google Scholar 

  7. Anthony, C. The Biochemistry of Methylotrophs (Academic, San Diego, 1983).

    Google Scholar 

  8. Sansone, F. J. & Martens, C. S. Limnol. Oceanogr. 23, 349–355 (1978).

    Article  ADS  CAS  Google Scholar 

  9. King, G. M. Nature 345, 513–515 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Whalen, S. C. & Reeburgh, W. S. Nature 346, 160–162 (1990).

    Article  ADS  CAS  Google Scholar 

  11. Meyers, A. J. FEMS Microbiol. Lett. 9, 297–300 (1980).

    Article  CAS  Google Scholar 

  12. Fischer, C. R. et al. Mar. Biol. 96, 59–71 (1987).

    Article  Google Scholar 

  13. Culbertson, C. W. et al. Appl. envir. Microbiol. 41, 396–403 (1981).

    CAS  Google Scholar 

  14. Munoz, E. M. & Silverman, M. P. Appl. Microbiol. 28, 507 (1974).

    ADS  CAS  PubMed  PubMed Central  Google Scholar 

  15. Oremland, R. S. et al. Nature 296, 143–145 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Oremland, R. S. & Taylor, B. F. Appl. Microbiol. 30, 707–709 (1975).

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Oremland, R. S. Appl. envir. Microbiol. 45, 1519–1525 (1983).

    CAS  Google Scholar 

  18. Oremland, R. S. Appl. envir. Microbiol. 56, 614–622 (1990).

    CAS  Google Scholar 

  19. Holzapfel-Pschorn, et al. FEMS microbiol. Ecol. 31, 343–351 (1985).

    Article  CAS  Google Scholar 

  20. Sass, R. L. et al. Global biogeochem. Cycles 4, 47–68 (1990).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oremland, R., Culbertson, C. Importance of methane-oxidizing bacteria in the methane budget as revealed by the use of a specific inhibitor. Nature 356, 421–423 (1992). https://doi.org/10.1038/356421a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/356421a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing