Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Indirect chemical effects of methane on climate warming

A Correction to this article was published on 18 June 1992

Abstract

METHANE concentrations in the atmosphere have increased from about 0.75 to 1.7 p.p.m.v. since pre-industrial times1,2. The current annual rate of increase of about 0.8% yr−1 (ref. 2) is due to increases in industrial and agricultural emissions. This increase in atmospheric methane concentrations not only influences the climate directly, but also indirectly through chemical reactions. Here we show that the climate effects of methane's atmospheric chemistry have previously been overestimated, notably by the Inter-governmental Panel on Climate Change (IPCC)3, largely owing to neglect of the height dependence of certain atmospheric radiative processes. Using available estimates of fossil-fuel-related leaks of methane, our results show that switching from coal and oil to natural gas as an energy source would reduce climate warming. A significant fraction of methane emissions cannot, however, be accounted for by known sources; should leakages from gas production and distribution be underestimated for some countries, then it might be unwise to switch to using natural gas.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pearman, G. I. et al. Nature 320, 248–250 (1986).

    Article  ADS  CAS  Google Scholar 

  2. Steele, L. P. et al. J. atmos. Chem. 5, 125–171 (1987).

    Article  CAS  Google Scholar 

  3. Intergovernmental Panel on Climate Change (IPCC) Report of Working Group I (eds Houghton, J. T. et al.) (WMO/UNEP, New York, 1990).

  4. Ramanathan, V. J. atmos. Sci. 33, 1330–1346 (1976).

    Article  ADS  CAS  Google Scholar 

  5. Donner, L. & Ramanathan, V. J. atmos. Sci. 37, 119–124 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Hansen, J. et al. J. geophys. Res. 93, 9341–9364 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Derwent, R. G. Trace Gases and their Relative Contribution to the Greenhouse Effect, Rep. AERF-R13716 (Harwell Laboratory, Oxfordshire, 1989).

  8. Rodhe, H. Science 248, 1217–1219 (1990).

    Article  ADS  CAS  Google Scholar 

  9. Lashof, D. A. & Ahuja, D. R. Nature 344, 529–531 (1990).

    Article  ADS  CAS  Google Scholar 

  10. Vaghjiani, G. L. & Ravishankara, A. R. Nature 350, 406–409 (1991).

    Article  ADS  CAS  Google Scholar 

  11. Valentin, K. M. thesis, Univ. of Mainz (1991).

  12. Siegonthaler, U. J. geophys. Res. 88, 3599–3608 (1983).

    Article  ADS  Google Scholar 

  13. Crutzen, P. J. Pure appl. Geophys. 106–8, 1385–1399 (1973).

    Article  Google Scholar 

  14. Nicolet, M. Disc. Faraday Soc. 37, 7–27 (1964).

    Article  Google Scholar 

  15. Brühl, C. & Crutzen, P. J. Clim. Dynam. 2, 173–203 (1988).

    Article  ADS  Google Scholar 

  16. Neftel, A. et al. Nature 295, 220–223 (1982).

    Article  ADS  CAS  Google Scholar 

  17. Raynaud, D. & Barnola, J. M. Nature 315, 309–311 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Keeling, C. D. et al. in Carbon Dioxide Review 1982 (ed. Clark, W. C.) 377–398 (Clarendon, Oxford, 1982).

    Google Scholar 

  19. Wang, W.-C. et al. J. atmos. Sci. 37, 545–552 (1980).

    Article  ADS  Google Scholar 

  20. Dobson, G. M. B., Brewer, A. W. & Cwilong, B. M. Proc. R. Soc. Lond. A185, 144–175 (1946).

    ADS  CAS  Google Scholar 

  21. Sze, N. D. Science 195, 673–675 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Lelieveld, J. & Crutzen, P. J. Nature 343, 227–233 (1990).

    Article  ADS  CAS  Google Scholar 

  23. Isaksen, I. S. A. & Hov, O. Tellus B39, 271–285 (1987).

    Article  Google Scholar 

  24. Prinn, R. et al. J. geophys. Res. (submitted).

  25. Cicerone, R. J. & Oremland R. S. Global biogeochem. Cycles 2, 299–327 (1988).

    Article  ADS  CAS  Google Scholar 

  26. Wahlen, M. et al. Science 245, 280–290 (1989).

    Article  ADS  Google Scholar 

  27. Quay, P. D. et al. Global biogeochem. Cycles 2, 385–397 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Arthur D. Little (ADL) Methane Emissions from the Oil and Gas Production Industries, Rep. to Ruhrgas A. G. (Essen, 1989).

    Google Scholar 

  29. Okken, P. A. Energy Policy, 203–204 (March, 1990).

  30. Ermittlung der Methan-Freisetzung durch Stoffverluste bei der Erdgasversorgung der BRD (Battelle, Frankfurt, 1989).

  31. Lelieveld, J., Crutzen, P. J. & Brühl, C. Chemosphere (submitted).

  32. Marland, G. & Rotty, R. M. Tellus B36, 232–261 (1984).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lelieveld, J., Crutzen, P. Indirect chemical effects of methane on climate warming. Nature 355, 339–342 (1992). https://doi.org/10.1038/355339a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355339a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing