Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

DNA twisting and the effects of non-contacted bases on affinity of 434 operator for 434 represser

Abstract

THE bacteriophage 434 represser regulates gene expression by binding with differing affinities to the six operator sites on the phage chromosome1,2. The symmetrically arrayed outer eight base pairs (four in each half-site) of these 14-base-pair operators are highly conserved but the middle four bases are divergent3. Although these four base pairs are not in contact with represser4,5, operators with A·T or T·A base pairs at these positions bind represser more strongly than those bearing C·G or G·C5, suggestiong that these bases are important for the represser's ability to discriminate between operators. There is evidence that the central base pairs influence operator function by constraining the twisting and/or bending of DNA5–7. Here we show that there is a relationship between the intrinsic twist of an operator, as determined by the sequence of its central bases, and its affinity for represser; an operator with a lower affinity is undertwisted relative to an operator with higher affinity. In complex with repressor, the twist of both high- and low-affinity operators is the same. These results indicate that the intrinsic twist of DNA and its twisting flexibility both affect the affinity of 434 operator for repressor.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Wharton, R. P., Brown, E. L. & Ptashne, M. Cell 38, 361–369 (1983).

    Article  Google Scholar 

  2. Ptashne, M. A Genetic Switch (Blackwell, Palo Alto, 1986).

    Google Scholar 

  3. Wharton, R. P. thesis, Harvard Univ. (1985).

  4. Anderson, J. E., Harrison, S. C. & Ptashne, M. Nature 326, 888–891 (1987).

    Article  ADS  Google Scholar 

  5. Koudelka, G. B., Harrison, S. C. & Ptashne, M. Nature 326, 886–888 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Aggarwal, A., Rodgers, D. W., Drottar, M., Ptashne, M. & Harrison, S. C. Science 242, 899–907 (1988).

    Article  ADS  CAS  Google Scholar 

  7. Koudelka, G. B., Harbury, P., Harrison, S. C. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 85, 4633–4637 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Shore, D. & Baldwin, R. L. J. molec. Biol. 170, 983–1007 (1983).

    Article  CAS  Google Scholar 

  9. Horowitz, D. & Wang, J. C. J. molec Biol. 173, 75–91 (1984).

    Article  CAS  Google Scholar 

  10. Koudelka, G. B. Nucleic Acids Res. 13, 4115–4119 (1991).

    Article  Google Scholar 

  11. Barkley, M. D. & Zimm, B. H. J. chem. Phys. 70, 2991–3007 (1979).

    Article  ADS  CAS  Google Scholar 

  12. Fujimoto, B. S. & Schurr, J. M. Nature 344, 175–178 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Drew, H. R., McCall, M. J. & Calladine, C. R. in Biological Aspects of DNA Topology (eds Cozzarelli, N. & Wang, J. C.) 1–56 (Cold Spring Harbor Laboratory, New York, 1990).

    Google Scholar 

  14. Hogan, M. & Austin, R. Nature 329, 263–266 (1987).

    Article  ADS  CAS  Google Scholar 

  15. Mondragon, A. & Harrison, S. C. J. molec. Biol. 219, 321–334 (1991).

    Article  CAS  Google Scholar 

  16. Dalma-Weiszhausz, D. D., Gartenberg, M. R. & Crothers, D. M. Nucleic Acids Res. 19, 611–616 (1991).

    Article  CAS  Google Scholar 

  17. Otwinowski, Z. et al. Nature 335, 321–329 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Auble, D. T. & deHaseth, P. L. J. molec. Biol. 202, 471–482 (1988).

    Article  CAS  Google Scholar 

  19. Johnson, A. D., Meyer, B. J. & Ptashne, M. Proc. natn. Acad. Sci. U.S.A. 76, 5061–5065 (1979).

    Article  ADS  CAS  Google Scholar 

  20. Kunkel, T. A. Proc. natn. Acad. Sci. U.S.A. 82, 488–492 (1985).

    Article  ADS  CAS  Google Scholar 

  21. Anderson, J. A., Ptashne, M. & Harrison, S. C. Proc. natn. Acad. Sci. U.S.A. 81, 1307–1311 (1984).

    Article  ADS  CAS  Google Scholar 

  22. Taylor, W. H. & Hagerman, P. J. molec. Biol. 212, 363–376 (1990).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koudelka, G., Carlson, P. DNA twisting and the effects of non-contacted bases on affinity of 434 operator for 434 represser. Nature 355, 89–91 (1992). https://doi.org/10.1038/355089a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/355089a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing