Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Formation of a planet orbiting pulsar 1829–10 from the debris of a supernova explosion

Abstract

THE 10-Earth-mass planet1 in a nearly circular 0.7-AU orbit around PSR1829–10 is unlikely to have survived the supernova, or especially the pre-supernova evolution of the star that became the pulsar. Here we describe how the planet might have been created inside the young supernova remnant1–3. The principal difficulty lies not in providing enough mass or conducive thermo-dynamic conditions for planet formation, but in explaining the large angular momentum (3 x 1048 erg s) and small eccentricity (<0.1) of the orbit. We propose that the planet formed from a rotationally supported disk of 0.02 solar mass of heavy elements that fell back from the supernova explosion to an initial radius of about 1,000 km. Viscous evolution of the disk then concentrated most of its angular momentum into a small amount of material at the disk's outer extremity: 10 Earth masses at 1013 cm. Here, dust grains that had condensed and precipitated towards the mid-plane grew through cohesive collisions and gravitational instabilities into 100-km planetesimals, which coagulated into the planet on a million-year timescale. We find the presence of a second planet, more massive and more distant, unlikely, although residual planetesimals may provide the fuel for γ-ray bursts.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ballos, M., Lyne, A. G. & Shemar, S. L. Nature 352, 311–313 (1991).

    Article  ADS  Google Scholar 

  2. Gaskell, C. M. Nature 338, 121–122 (1989).

    Article  ADS  Google Scholar 

  3. Nakamura, T. KEK Preprint No. 88–127, February, (1989).

  4. Weaver, T. A., Woosley, S. E. & Zimmerman, G. B. Astrophys. J. 225, 1021–1029 (1978).

    Article  ADS  CAS  Google Scholar 

  5. Woosley, S. E., Pinto, P. A. & Ensman, L. M. Astrophys. J. 324, 466–489 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Safronov, V. S. & Ruzmaikina, T. V. in Protostars & Planets II (eds Black, D. & Matthews, M.) 959–980 (University of Arizona Press, Tucson. 1985).

    Google Scholar 

  7. Chevalier, R. A. Astrophys. J. 346, 847–859 (1990).

    Article  ADS  Google Scholar 

  8. Woosley, S. E. Astrophys. J. 330, 218–253 (1988).

    Article  ADS  CAS  Google Scholar 

  9. McNally, D. The Observatory 85, 166–169 (1965).

    ADS  Google Scholar 

  10. Endal, A. S. & Sofia, S. Astrophys. J. 220, 279–290 (1978).

    Article  ADS  CAS  Google Scholar 

  11. Herant, M. & Benz, W. 1991 Harvard-Smithsonian Center for Astrophysics, Preprint No. 3169 (1991); Astrophys. J. (in the press).

  12. Fryxell, B. A., Müller, E. & Arnett, W. D. Astrophys. J. 367, 619–634 (1991).

    Article  ADS  CAS  Google Scholar 

  13. Müller, E., Fryxell, B. & Arnett, W. D. Max-Planck Institut für Physik und Astrophysik, Preprint MPA 586 (1991); Astr. Astrophys. (submitted).

  14. Podsiadlowski, Ph., Pringle, J. E. & Rees, M. J. Nature 352, 783–785 (1991).

    Article  ADS  Google Scholar 

  15. Ruderman, M., Shaham, J. & Tavani, M. Astrophys. J. 336, 507–518 (1989).

    Article  ADS  CAS  Google Scholar 

  16. Terebey, S. Shu, F. H. & Cassen, P. Astrophys. J. 286, 529–551 (1984).

    Article  ADS  CAS  Google Scholar 

  17. Lüst, R. Z. Naturforsch. A7, 87–98 (1952).

    ADS  Google Scholar 

  18. Lynden-Bell, D. & Pringle, J. E. Mon. Not. R. astr. Soc. 168, 608–637 (1974).

    Article  ADS  Google Scholar 

  19. Pringle, J. E. Ann. Rev. Astr. Astrophys. 19, 137–162 (1981).

    Article  ADS  Google Scholar 

  20. Balbus, S. & Hawley, J. Astrophys. J. 376, 214 (1991).

    Article  ADS  Google Scholar 

  21. Lin, D. N. C. & Papaloizou, J. C. B. in Protostars & Planets II (eds Black, D. & Matthews, M.) 981–1072 (University of Arizona Press, Tucson 1985).

    Google Scholar 

  22. Lin, D. N. C. & Papaloizou, J. C. B. Mon. Not. R. astr. Soc. 191, 37–48 (1980).

    ADS  Google Scholar 

  23. Ruden, S. P., Papaloizou, J. C. B. & Lin, D. N. C. Astrophys. J. 329, 739–763 (1988).

    Article  ADS  Google Scholar 

  24. Itoh, N., Sato, N., & Adachi, T. Preprint (Sofia University, Tokyo, 1990).

  25. Manchester, R. N., & Taylor, J. H. in Pulsars (Freeman, San Francisco, 1977).

    Google Scholar 

  26. Shakura, N. I. & Sunyaev, R. A. Astr. Astrophys. 24, 337–355 (1973).

    ADS  Google Scholar 

  27. Treves, A., Maraschi, L. & Abramowicz, M. Publ. Astr. Soc. Pacific 100, 427–451 (1988).

    Article  ADS  Google Scholar 

  28. Gunn, J. E. & Ostriker, J. P. Astrophys. J. 160, 979–1002 (1970).

    Article  ADS  Google Scholar 

  29. Lamb, F. K., Pethick, C. J. & Pine, D. Astrophys. J. 184, 271–289 (1973).

    Article  ADS  Google Scholar 

  30. Ghosh, P. & Lamb, F. K. Astrophys. J. 234, 296–316 (1979).

    Article  ADS  Google Scholar 

  31. Illarionov, A. & Sunyaev, R. A. Astr. Astrophys. 39, 185–195 (1975).

    ADS  Google Scholar 

  32. Goldreich, P., & Julian, W. H. Astrophys. J. 157, 869–880 (1969).

    Article  ADS  Google Scholar 

  33. Kennel, C. F., Fujimura, F. & Pellat, R. Space Sci. Rev. 24, 407 (1979).

    ADS  Google Scholar 

  34. Weidenschilling, S. J. Gerlands Beitr. Geophys. 96, 21–33 (1987).

    ADS  Google Scholar 

  35. Weidenschilling, S. J. & Cuzzi, J. N. in Protostars & Planets III (eds Levy, E. & Matthews, M.) (University of Arizona Press, Tucson, in the press).

  36. Goldreich, P. & Ward, W. R. Astrophys. J. 183, 1051–1061 (1973).

    Article  ADS  Google Scholar 

  37. Safronov, V. S. Evolution of the Protoplanetary Cloud and the Formation of the Earth and Planets (Nauka, Moscow, 1969); (Engl. trans.) NASA TTF-677 (1972).

    Google Scholar 

  38. Wetherill, G. W. Ann. Rev. Astr. Astrophys. 18, 77–133 (1980).

    Article  ADS  CAS  Google Scholar 

  39. Wetherill, G. W. & Stewart, G. R. Icarus 77, 330–357 (1989).

    Article  ADS  Google Scholar 

  40. Stewart, G. R. & Wetherill, G. W. Icarus 74, 542–553 (1988).

    Article  ADS  Google Scholar 

  41. Binney, J. & Tremaine, S. Galactic Dynamics (Princeton University Press, 1987).

    MATH  Google Scholar 

  42. Harwit, M. & Salpeter, E. E. Astrophys. J. 186, L37–39 (1973).

    Article  ADS  CAS  Google Scholar 

  43. Sridhar, S. & Tremaine, S. Icarus reprint (Canadian Institute of Theoretical Astrophysics, 1991).

  44. Tremaine, S. & Zytkov, A. Astrophys. J. 301, 155–163 (1986).

    Article  ADS  CAS  Google Scholar 

  45. Harwit, M. Astrophysical Concepts (Wiley, New York, 1973).

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lin, D., Woosley, S. & Bodenheimer, P. Formation of a planet orbiting pulsar 1829–10 from the debris of a supernova explosion. Nature 353, 827–829 (1991). https://doi.org/10.1038/353827a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/353827a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing