Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mating patterns in seminatural populations of mice influenced by MHC genotype

Abstract

BECAUSE of the central role of major histocompatibility complex (MHC) genes in immune recognition1–3, it is often assumed that parasite-driven selection maintains the unprecendented genetic diversity of these genes4–7. But associations between MHC genotype and specific infectious diseases have been difficult to identify8,9 with a few exceptions such as Marek's disease10 and malaria11. Alternatively, MHC-related reproductive mechanisms such as selective abortion12–15 and mating preferences16,17 could be responsible for the diversity. To determine both the nature and strength of selection operating on MHC genes by we have studied components of selection in seminatural populations of mice (Mils musculus domesticus). Here we assess MHC-related patterns of reproduction and early (preweaning) mortality by analysing 1,139 progeny born in nine populations, and 662 progeny from laboratory matings. Reproductive mechanisms, primarily mating preferences, result in 27% fewer MHC-homozygous offspring than expected from random mating. MHC genotype had no detectable influence on neonatal (preweaning) mortality. These mating preferences are strong enough to account for most of the MHC genetic diversity found in natural populations of Mus.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Babbit, B. P., Allen, P. M. & Matsueda, G. Nature 317, 359–361 (1985).

    Article  ADS  Google Scholar 

  2. Roy, S., Scherer, M. T., Briner, T. J., Smith, J. A. & Gefter, M. L. Science 244, 572–575 (1989).

    Article  ADS  CAS  Google Scholar 

  3. Kappler, J. W., Roehm, N. & Marrack, P. Cell 49, 273–280 (1987).

    Article  CAS  Google Scholar 

  4. Doherty, P. C. & Zinkernagel, R. M. Nature 256, 50–52 (1975).

    Article  ADS  CAS  Google Scholar 

  5. Hughes, A. L. & Nei, M. Nature 335, 167–170 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Potts, W. K. & Wakeland, E. K. Trends Ecol. Evol. 5, 181–187 (1990).

    Article  CAS  Google Scholar 

  7. Takahata, N. & Nei, M. Genetics 124, 967–978 (1990).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Tiwari, J. L. & Terasaki, P. I. HLA and Disease Associations (Springer, New York, 1985).

    Book  Google Scholar 

  9. Klein, J. Natural History of the Major Histocompatibility Complex (Wiley, New York, 1986).

    Google Scholar 

  10. Pazderka, F., Longenecker, B. M., Law, G. R. J., Stone, H. A. & Ruth, R. F. Immunogenetics 2, 93–100 (1975).

    Article  Google Scholar 

  11. Hill, A. V. S. et al. Nature (this issue).

  12. Clarke, B. & Kirby, D. R. S. Nature 211, 999–1000 (1966).

    Article  ADS  CAS  Google Scholar 

  13. Palm, J. Cancer Res. 34, 2061–2065 (1974).

    CAS  PubMed  Google Scholar 

  14. Hamilton, M. & Hellstron, I. J. Reprod. Immun. 19, 267–270 (1978).

    CAS  Google Scholar 

  15. Thomas, M. L., Harger, J. H., Wagner, D. K., Rabin, B. S. & Gill, T. J. Am. J. Obstet. Gynec. 151, 1053–1058 (1985).

    Article  CAS  Google Scholar 

  16. Yamazaki, K. et al. J. exp. Med. 144, 1324–1335 (1976).

    Article  CAS  Google Scholar 

  17. Egid, K. & Brown, J. L. Anim. Behav. 38, 548–549 (1989).

    Article  Google Scholar 

  18. Partridge, L. Phil. Trans. R. Soc. B 319, 525–539 (1988).

    Article  CAS  Google Scholar 

  19. Nei, M. & Hughes, A. L. in Evolution at the Molecular Level (eds Selander, R. K., Clark, A. G. & Whittam, T. S.) 222–247 (Sinauer, Sunderland, Massachusetts, 1991).

    Google Scholar 

  20. Karlin, S. & Feldman, M. W. Genetics 59, 117–136 (1968).

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Yamazaki, K. et al. J. exp. Med. 150, 755–760 (1979).

    Article  CAS  Google Scholar 

  22. Singh, P. B., Brown, R. E. & Roser, B. Nature 327, 161–164 (1987).

    Article  ADS  CAS  Google Scholar 

  23. Gilbert, A. N., Yamazaki, K. & Beauchamp, G. K. J. comp. Pathol. 100, 262–265 (1986).

    CAS  Google Scholar 

  24. Brown, J. L. in Ethical Questions in Brain and Behaviour (ed. Pfaff, D. W.) 111–124 (Springer, New York, 1983).

    Book  Google Scholar 

  25. Uyenoyama, M. K. in The Evolution of Sex (eds Michod, R. E. & Levin, B. R.) 212–232 (Sinauer, Sunderland, Massachusetts, 1988).

    Google Scholar 

  26. Weir, B. S. & Cockerham, C. C. Genet. Res. 21, 247–262 (1973).

    Article  CAS  Google Scholar 

  27. McConnell, T. J., Talbot, W. S., McIndoe, R. A. & Wakeland, E. K. Nature 332, 651–654 (1988).

    Article  ADS  CAS  Google Scholar 

  28. Bronson, F. H. Q. Rev. Biol. 54, 265–299 (1979).

    Article  CAS  Google Scholar 

  29. Wilkinson, G. S. & Baker, A. E. M. Ethology 77, 103–114 (1988).

    Article  Google Scholar 

  30. Yokoyama, S. & Nei, M. Genetics 91, 609–626 (1979).

    MathSciNet  CAS  PubMed  PubMed Central  Google Scholar 

  31. Melvold, R. W. & Kohn, H. I. in Transgenic Mice and Mutants in MHC Research (eds Egorov, I. K. & David, C. S.) (Springer, New York, 1990).

    Google Scholar 

  32. Nadeau, J. H., Wakeland, E. K., Gotze, D. & Klein, J. Genet Res. 37, 17–31 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Potts, W., Manning, C. & Wakeland, E. Mating patterns in seminatural populations of mice influenced by MHC genotype. Nature 352, 619–621 (1991). https://doi.org/10.1038/352619a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352619a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing