Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Transition from a uniform state to hexagonal and striped Turing patterns

Abstract

CHEMICAL travelling waves have been studied experimentally for more than two decades1–5, but the stationary patterns predicted by Turing6 in 1952 were observed only recently7–9, as patterns localized along a band in a gel reactor containing a concentration gradient in reagents. The observations are consistent with a mathematical model for their geometry of reactor10 (see also ref. 11). Here we report the observation of extended (quasi-two-dimensional) Turing patterns and of a Turing bifurcation—a transition, as a control parameter is varied, from a spatially uniform state to a patterned state. These patterns form spontaneously in a thin disc-shaped gel in contact with a reservoir of reagents of the chlorite–iodide–malonic acid reaction12. Figure 1 shows examples of the hexagonal, striped and mixed patterns that can occur. Turing patterns have similarities to hydrodynamic patterns (see, for example, ref. 13), but are of particular interest because they possess an intrinsic wavelength and have a possible relationship to biological patterns14–17.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Zaikin, A. N. & Zhabotinskii, A. M. Nature 225, 535–537 (1970).

    Article  ADS  CAS  Google Scholar 

  2. Field, R. J. & Berger, M. (eds) Oscillations and Traveling Waves in Chemical Systems (Wiley, New York, 1985).

  3. Winfree, A. T. When Time Breaks Down (Princeton University Press, 1987).

    Google Scholar 

  4. Tyson, J. J. & Keener, J. P. Physica D32, 327–361 (1988).

    MathSciNet  Google Scholar 

  5. Noszticzius, Z., Horsthemke, W., McCormick, W. D., Swinney, H. L. & Tam, W. Y. Nature 329, 619–620 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Turing, A. M. Phil. Trans. R. Soc. Lond. B327, 37–72 (1952).

    Google Scholar 

  7. Castets, V., Dulos, E., Boissonade, J. & de Kepper, P. Phys. Rev. Lett. 64, 2953–2956 (1990).

    Article  ADS  CAS  Google Scholar 

  8. Boissonade, J., Castets, V., Dulos, E. & de Kepper, P. ISNM 97, 67–77 (Birkhäuser, Basel, 1991).

    Google Scholar 

  9. De Kepper, P., Castets, V., Dulos, E. & Boissonade, J. Physica D49, 161–169 (1991).

    CAS  Google Scholar 

  10. Boissonade, J. J. Phys. 49, 541–546 (1988).

    Article  Google Scholar 

  11. Lengyel, I. & Epstein, I. R. Science 251, 650–652 (1991).

    Article  ADS  CAS  Google Scholar 

  12. De Kepper, P., Boissonade, J. & Epstein, I. R. J. phys. Chem. 94, 6525–6536 (1990).

    Article  CAS  Google Scholar 

  13. White, D. B. J. Fluid Mech. 191, 247–286 (1988).

    Article  ADS  CAS  Google Scholar 

  14. Nicolis, G. & Prigogine, I. Self-Organization in Nonequilibrium Systems (Wiley, New York, 1977).

    MATH  Google Scholar 

  15. Meinhardt, H. Models of Biological Pattern Formation (Academic New York, 1982).

    Google Scholar 

  16. Harrison, L. G. J. theor. Biol. 125, 369–384 (1987).

    Article  CAS  Google Scholar 

  17. Murray, J. D. Mathematical Biology (Springer, Berlin, 1989).

    Book  Google Scholar 

  18. Kshirsagar, G., Noszticzius, Z., McCormick, W. & Swinney, H. L. Physica D49, 5–12 (1991).

    CAS  Google Scholar 

  19. Borckmans, P., Dewel, G. & De Wit, A. in Seeds: Genesis of Natural and Artificial Forms, 62–71 (Le Biopole Végétal, Amiens, 1991).

    Google Scholar 

  20. Lacalli, T. C., Wilkinson, D. A. & Harrison, L. C. Development 104, 105–113 (1988).

    CAS  PubMed  Google Scholar 

  21. Haken, H. & Olbrich, H. J. math. Biol. 6, 317–331 (1978).

    Article  MathSciNet  Google Scholar 

  22. Mannerville, P. Dissipative Structures and Weak Turbulence (Academic, Boston, 1990).

    Google Scholar 

  23. Busse, F. H. J. Fluid Mech. 30, 625–649 (1967).

    Article  ADS  Google Scholar 

  24. Pismen, L. M. J. chem. Phys. 72, 1900–1907 (1980).

    Article  ADS  CAS  Google Scholar 

  25. Malomed, B. A. & Tribel'skii, M. I. Sov. Phys. JETP 65, 3013–3016 (1987).

    Google Scholar 

  26. Schnackenberg, J. J. theor. Biol. 81, 389–400 (1979).

    Article  Google Scholar 

  27. Walgraef, D., Dewel, G. & Borckmans, P. Phys. Rev. A21, 397–404 (1980); Adv. chem. Phys. 49, 311–355 (1982).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ouyang, Q., Swinney, H. Transition from a uniform state to hexagonal and striped Turing patterns. Nature 352, 610–612 (1991). https://doi.org/10.1038/352610a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352610a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing