Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Gravitationally unbound comets move in predominantly retrograde orbits

Abstract

COMETS are presumed to enter the inner Solar System from the Oort cloud, a repository of comets more than 104 AU from the Sun. Provided the perturbing effects of planetary encounters are taken into account, the original orbital energy of a comet can be calculated, and is negative or positive according to whether the comet's orbit is bound or unbound. The Oort effect1 is the tendency for the original energies of long-period (>200-yr) comets to fall within a narrow range: about 25% of such comets have original energies in the upper 0.2% of the total energy range. In addition, 10% of long-period comets are unbound, and it has been found2 that positive original energy correlates with distance of closest approach to the Sun. We report here a further correlation: unbound comets are more likely to move in retrograde orbits. We suggest that this anomaly comes about because of the omission from the orbital energy determination of non-gravitational effects arising from enhanced volatility.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Oort, J. H. Bull. astr. Inst. Neth. 11, 91–110 (1950).

    ADS  Google Scholar 

  2. Marsden, B. G., Sekanina, Z. & Everhart, E. Astr. J. 83, 64–71 (1978).

    Article  ADS  Google Scholar 

  3. Marsden, B. G. & Sekanina, Z. Astr. J. 78, 1118–1124 (1973).

    Article  ADS  Google Scholar 

  4. Duncan, M., Quinn, T. & Tremaine, S. Astr. J. 94, 1330–1338 (1987).

    Article  ADS  Google Scholar 

  5. Hills, J. G. Astr. J. 86, 1730–1740 (1981).

    Article  ADS  Google Scholar 

  6. Byl, J. Earth Moon Planets 36, 263–273 (1986).

    Article  ADS  Google Scholar 

  7. Heisler, J. & Tremaine, S. Icarus 65, 13–26 (1986).

    Article  ADS  Google Scholar 

  8. Heisler, J., Tremaine, S. & Alcock, C. Icarus 70, 269–288 (1987).

    Article  ADS  Google Scholar 

  9. Matese, J. J. & Whitman, P. G. Icarus 82, 389–401 (1989).

    Article  ADS  Google Scholar 

  10. Morris, D. E. & Muller, R. A. Icarus 65, 1–12 (1986).

    Article  ADS  Google Scholar 

  11. Torbett, M. V. Mon. Not. R. astr. Soc. 223, 885–895 (1986).

    Article  ADS  Google Scholar 

  12. Yabushita, S. Mon. Not. R. astr. Soc. 231, 723–733 (1988).

    Article  ADS  Google Scholar 

  13. Yabushita, S. Astr. J. 97, 262–264 (1989).

    Article  ADS  Google Scholar 

  14. Marsden, B. G. Catalogue of Cometary Orbits 6th edn (Smithsonian Astrophysical Observatory, Cambridge, Massachusetts, 1989).

    Google Scholar 

  15. Meyer, S. L. Data Analysis, 254–290 (Wiley, New York, 1975).

  16. Press, W. H., Flannery, B. P., Teukolsky, S. A. & Vetterling, W. T. Numerical Recipes, 464–497 (Cambridge University Press, 1986).

    MATH  Google Scholar 

  17. Leinert, C. I., Richter, I., Pitz, E. & Planck, B. Astr. Astrophys. 103, 177–188 (1981).

    ADS  Google Scholar 

  18. Leinert, C. I., Roser, S. & Buitriago, J. Astr. Astrophys. 118, 345–357 (1983).

    ADS  Google Scholar 

  19. Grun, E., Zook, H. A., Fechtig, H. & Giese, R. H. Icarus 62, 244–272 (1985).

    Article  ADS  Google Scholar 

  20. Marsden, B. G. & Sekanina, Z. Astr. J. 76, 1135–1151 (1971).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Matese, J., Whitman, P. & Whitmire, D. Gravitationally unbound comets move in predominantly retrograde orbits. Nature 352, 506–508 (1991). https://doi.org/10.1038/352506a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352506a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing