Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

An invasion percolation model of drainage network evolution

Abstract

STREAM networks evolve by headward growth and branching away from escarpments such as rift margins. The structure of these networks and their topographic relief are known to be fractal1–3, but no model so far has been able to generate the observed scaling properties. Here I present a statistical model of network growth in which stream heads branch and propagate at a rate that depends only on the local strength of the substrate. This model corresponds to the process of invasion percolation4, with the added requirement of self-avoidance; it is a self-organized critical system5 with properties similar to those of standard percolation models6. A description based on self-avoiding invasion percolation reproduces the known scaling behaviour of stream networks, and may provide a valuable tool for delineation of drainage patterns from digital topographic data sets7,8.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Mandelbrot, B. B. The Fractal Geometry of Nature (Freeman, New York, 1982).

    MATH  Google Scholar 

  2. Huang, J. & Turcotte, D. L. J. geophys. Res. 94, 7491–7495 (1989).

    Article  ADS  Google Scholar 

  3. Thornes, J. Nature 345, 764–765 (1990).

    Article  ADS  Google Scholar 

  4. Wilkinson, D. & Willemsen, J. F. J. Phys. A 16, 3365–3376 (1983).

    ADS  MathSciNet  Google Scholar 

  5. Bak, P., Tang, C. & Wiesenfeld, K. Phys. Rev. A38, 364–374 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  6. Stauffer, D. Introduction to Percolation Theory (Taylor & Francis, London, 1985).

    Book  Google Scholar 

  7. Band, L. E. Water Resour. Res. 12, 15–24 (1986).

    Article  ADS  Google Scholar 

  8. Jenson, S. K. & Domingue, J. O. Photogram. Engng Remote Sens. 54, 1593–1600 (1988).

    Google Scholar 

  9. Leopold, L. B. & Langbein, W. B. US Geol. Survey Prof. Pap. 500-A, 1–20 (1962).

  10. Howard, A. D. Geogr. Anal. 3, 29–51 (1971).

    Article  Google Scholar 

  11. Takayasu, H., Nishikawa, I. & Tasaki, H. Phys. Rev. A 37, 3110–3117 (1988).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  12. Hjelmfelt, A. T. Jr Water Resour. Bull. 24, 455–459 (1988).

    Article  Google Scholar 

  13. Rosso, R., Bacchi, B. & La Barbera, P. Water Resour. Res. 27, 381–387 (1991).

    Article  ADS  Google Scholar 

  14. Hack, J. T. US Geol. Survey Prof. Pap. 294-B, 1–97 (1957).

  15. Gray, D. M. J. geophys. Res. 66, 1215–1223 (1961).

    Article  ADS  Google Scholar 

  16. Weissel, J. K. Pacific Rim Congress 90, Proc. v. III, 63–70 (Austral. Inst. Min. and Metall, Parkville, Vic., 1990).

  17. Havlin, S. & Ben-Avraham, D. Adv. Phys. 36, 695–798 (1987).

    Article  ADS  CAS  Google Scholar 

  18. Havlin, S., Nossal, R. & Trus, B. Phys. Rev. A 32, 3829–3831 (1985).

    Article  ADS  CAS  Google Scholar 

  19. Herrmann, H. J. & Stanley, H. E. J. Phys. A 21, L829–L833 (1988).

    ADS  Google Scholar 

  20. Hinrichsen, E. L., Måløy, K. J., Feder, J. & Jøssang, T. J. Phys. A 22, L271–L277 (1989).

    ADS  Google Scholar 

  21. La Barbera, P. & Rosso, R. Water Resour. Res. 25, 735–741 (1989).

    Article  ADS  Google Scholar 

  22. Shreve, R. L. J. Geol. 77, 397–414 (1969).

    Article  ADS  Google Scholar 

  23. Dhar, D. & Ramaswamy, R. Phys. Rev. Lett. 54, 1346–1349 (1985).

    Article  ADS  MathSciNet  CAS  Google Scholar 

  24. Smart, J. S. Bull. geol. Soc. Am. 80, 1757–1774 (1969).

    Article  Google Scholar 

  25. Meakin, P. J. Phys. A 20, L1113–L1119 (1987).

    ADS  CAS  Google Scholar 

  26. Meakin, P., Majid, I., Havlin, S. & Stanley, H. E. J. Phys. A 17, L975–L981 (1984).

    ADS  CAS  Google Scholar 

  27. Mandelbrot, B. B. & Evertsz, C. J. G. Nature 348, 143–145 (1990).

    Article  ADS  Google Scholar 

  28. Strahler, A. N. Handbook of Applied Hydrology (ed. Chow, V. T.) 4–11 (McGraw-Hill. New York, 1964).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Stark, C. An invasion percolation model of drainage network evolution. Nature 352, 423–425 (1991). https://doi.org/10.1038/352423a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/352423a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing