Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 23 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 352, 236 - 238 (18 July 1991); doi:10.1038/352236a0

Better speech recognition with cochlear implants

Blake S. Wilson*, Charles C. Finley*, Dewey T. Lawson*, Robert D. Wolford, Donald K. Eddington§ & William M. Rabinowitz§

*Neuroscience Program, Research Triangle Institute, Research Triangle Park, North Carolina 27709, USA
Division of Otolaryngology Hearing Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA
Center for Speech and Hearing Disorders, Duke University Medical Center, Durham, North Carolina 27710, USA
§Research Laboratory of Electronics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, Cochlear Implant Research Laboratory, Massachusetts Eye and Ear Infirmary, Boston, Massachusetts 02114, and Department of Otology and Laryngology, Harvard Medical School, Boston, Massachusetts 02115, USA

HIGH levels of speech recognition have been achieved with a new sound processing strategy for multielectrode cochlear implants. A cochlear implant system consists of one or more implanted elec-trodes for direct electrical activation of the auditory nerve, an external speech processor that transforms a microphone input into stimuli for each electrode, and a transcutaneous (rf-link) or per-cutaneous (direct) connection between the processor and the elec-trodes. We report here the comparison of the new strategy and a standard clinical processor. The standard compressed analogue (CA) processor1,2 presented analogue waveforms simultaneously to all electrodes, whereas the new continuous interleaved sampling (CIS) strategy presented brief pulses to each electrode in a nonover-lapping sequence. Seven experienced implant users, selected for their excellent performance with the CA processor, participated as subjects. The new strategy produced large improvements in the scores of speech reception tests for all subjects. These results have important implications for the treatment of deafness and for minimal representations of speech at the auditory periphery.

------------------

References

1. Eddington, D. K. J. acoust. Soc. Am. 68, 885−891 (1980). | PubMed | ChemPort |
2. Eddington, D. K. Ann. N. Y. Acad. Sci. 405, 241−258 (1983). | PubMed | ChemPort |
3. Pfingst, B. E. Arch. Otolaryngol. 110, 140−144 (1984). | PubMed | ChemPort |
4. Shannon, R. V. Hear. Res. 11, 157−189 (1983). | Article | PubMed | ISI | ChemPort |
5. Wilson, B. S., Finley, C. C. & Lawson, D. T. in Cochlear Implants: Models of the Electrically Stimulated Ear (eds Miller, J. M. & Spelman, F. A.) 339−376 (Springer, New York, 1990).
6. Eddington, D. K., Dobelle, W. H., Brackmann, D. E., Mladejovsky, M. G. & Parkin, J. L. Ann. Otol. Rhinol. Lar. 87, suppl. 53, 1−39 (1978). | ChemPort |
7. Müller, C. G. Ann. N. Y. Acad. Sci. 405, 412−420 (1983). | PubMed |
8. Simmons, F. B. Arch. Otolaryngol. 84, 2−54 (1966). | PubMed | ISI | ChemPort |
9. Tong, Y. C., Blarney, P. J., Dowell, R. C. & Clark, G. M. J. acoust. Soc. Am. 74, 73−80 (1983). | PubMed | ChemPort |
10. White, M. W., Merzenich, M. M. & Gardi, J. N. Arch. Otolaryngol. 110, 493−501 (1984). | PubMed | ChemPort |
11. Wilson, B. S., Finley, C. C., Lawson, D. T. & Wolford, R. D. Proc. I.E.E.E. 76, 1143−1154 (1988). | Article |
12. Wilson, B. S., Lawson, D. T., Finley, C. C. & Wolford, R. D. Am. J. Otol. 12, suppl. 1, 56−61 (1991). | PubMed |
13. Clark, G. M. et al. Adv. Otol.-Rhinol. Lar. 38, 1−189 (1987).
14. Dorman, M. F., Hannley, M. T., Dankowski, K., Smith, L. & McCandless, G. Ear Hear. 10, 44−49 (1989). | PubMed | ChemPort |
15. Gantz, B. J. et al. Laryngoscope 98, 1100−1106 (1988). | PubMed | ChemPort |
16. Schindler, R. A. & Kessler, D. K. Am. J. Otol. 8, 247−255 (1987). | PubMed | ChemPort |
17. Tyler, R. S., Moore, B. C. J. & Kuk, F. K. J. Speech. Hear. Res. 32, 887−911 (1989). | PubMed | ISI | ChemPort |
18. Owens, E., Kessler, D. K., Raggio, M. W. & Schubert, E. D. Ear Hear. 6, 280−287 (1985). | PubMed | ChemPort |
19. De Filippo, C. L. & Scott, B. L. J. acoust. Soc. Am. 63, 1186−1192 (1978). | PubMed | ChemPort |
20. Owens, E. & Raggio, M. J. Speech Hear. Disorders 52, 120−128 (1987). | ChemPort |
21. Robbins, A. M., Osberger, M. J., Miyamoto, R. T., Kienle, M. L. & Myres, W. A. J. Speech Hear. Res. 28, 565−578 (1985). | PubMed | ChemPort |
22. Sparks, D. W., Ardell, L. A., Bourgeois, M., Wiedmer, B. & Kuhl, P. K. J. acoust. Soc. Am. 65, 810−815 (1979). | PubMed | ISI | ChemPort |
23. Bess, F. H. & Townsend, T. H. J. Speech Hear. Disorders 42, 232−237 (1977). | ChemPort |
24. Dubno, J. R. & Dirks, D. D. J. Speech Hear. Res. 25, 135−141 (1982). | PubMed | ChemPort |
25. Dowell, R. C., Seligman, P. M., Blamey, P. J. & Clark, G. M. Ann. Otol. Rhinol. Lar. 96, suppl. 128, 132−134 (1987).
26. Tyler, R. S., Preece, J. P., Lansing, C. R., Otto, S. R. & Gantz, B. J. J. Speech Hear. Res. 29, 282−287 (1986). | PubMed | ChemPort |
27. Flanagan, J. L. Speech Analysis, Synthesis and Perception (Springer, Berlin, 1972).
28. Hill, F. J., McRae, L. P. & McClellan, R. P. J. acoust. Soc. Am. 44, 13−18 (1968). | PubMed | ChemPort |
29. Remez, R. E., Rubin, P. E., Pisoni, D. B. & Carrell, T. D. Science 212, 947−950 (1981). | PubMed | ChemPort |
30. Rosen, S. in Cochlear Implant: Acquisitions and Controversies (eds Fraysse, B. & Cochard, N.) 3−26 (Impasse La Caussade, Toulouse, 1989).
31. Rosen, S. M., Fourcin, A. J. & Moore, B. C. J. Nature 291, 150−152 (1981). | Article | PubMed | ChemPort |
32. Van Tasell, D. J., Soli, S. D., Kirby, V. M. & Widen, G. P. J. acoust. Soc. Am. 82, 1152−1161 (1987). | PubMed | ChemPort |



© 1991 Nature Publishing Group
Privacy Policy