Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Tuesday 19 September 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 351, 391 - 393 (30 May 1991); doi:10.1038/351391a0

The importance of small-scale faulting in regional extension

John Walsh*, Juan Watterson* & Graham Yielding

* Fault Analysis Group, Department of Earth Sciences, University of Liverpool, PO Box 147, Liverpool L69 3BX, UK
Badley Ashton & Associates Ltd, Winceby House, Winceby, Horncastle, Lincolnshire LN9 6PB, UK

A RECURRING observation in many studies of extensional basins has been that the amount of extension visible on normal faults (for example, on seismic reflection profiles) is significantly less than the amount of extension indicated by crustal thickness and thermal subsidence1–5. One mechanism suggested to account for this discrepancy is small-scale faulting, with offsets too small to be resolved seismically6,7. But earthquake studies8–10 indicate that small faults are responsible for only a small fraction of the total seismic moment in an active area. Scholz and Cowie11 have recently attempted to extend this approach to the total strain at the end of a finite deformation interval by combining scaling laws describing the distributions of fault lengths and displacements. Here we present fault displacement data that directly conflict with Scholz and Cowie's conclusions, and imply that up to 40% of the extension may be missed by summing fault offsets on basin profiles. The fault population at the end of a long deformation interval may differ substantially from that responsible for the earthquake population at any one time.

------------------

References

1. Wood, R. & Barton, P. Nature 302, 134−136 (1983). | Article | ISI |
2. Ziegler, P. A. Nature 304, 561 (1983). | Article | PubMed | ISI |
3. Hellinger, S. J. et al. Basin Res. 1, 191−200 (1988).
4. Marsden, G. et al. in Tectonic Evolution of the North Sea Rifts (eds Blundell, D. J. & Gibbs, A. D.) 236−257 (Oxford University Press, 1990).
5. Ziegler, P. A. Phil. Trans. R. Soc. A305, 113−143 (1982). | ISI |
6. Angelier, J. & Colleta, B. Nature 301, 49−51 (1983). | Article |
7. Kautz, S. A. & Sclater, J. G. Tectonics 7, 823−832 (1988).
8. Gutenberg, B. & Richter, C. F. Seismicity of the Earth and Associated Phenomena (Princeton University Press, New Jersey, 1954).
9. Wyss, M. Geophys. J. R. astr. Soc. 31, 341−359 (1973).
10. Jackson, J. & McKenzie, D. Geophys. J. 93, 45−73 (1988).
11. Scholz, C. H. & Cowie, P. A. Nature 346, 837−839 (1990). | Article |
12. Childs, C. et al. in North Sea Oil and Gas Reservoirs II, 309−318 (Graham & Trotman, London, 1990).
13. Gabrielsen, R. H. & Koestler, A. G. Norsk geol. Tidsskr. 67, 371−381 (1987).
14. King, G. C. P. Pure appl. Geoph. 121, 761−815 (1983).
15. Turcotte, D. Tectonophysics 132, 261−269 (1986). | Article |
16. Heffer, K. & Bevan, T. in Proc. 2nd Eur. Petrol. Conf. 367−376, Soc. Petrol. Eng reprint No. 20981 (1990).
17. Sassi, W. et al. in Structural and Tectonic Modelling and its Application to Petroleum Geology (ed. Norsk Petroleumsforening) (Graham & Trotman, London, in the press).
18. Sclater, J. G. & Celerier, B. Basin Res. 1, 217−221 (1989).
19. Marrett, R. & Allmendinger, R. W. J. struct. Geol. (in the press).
20. Marrett, R. & Allmendinger, R. W. Geology (in the press).
21. Kostrov, V. V. Izv. Earth Physics 1, 13−21 (1974).
22. Walsh, J. & Watterson, J. J. struct. Geol. 10, 239−247 (1988). | Article | ISI |
23. Badley, M. E. et al. J. geol. Soc. 145, 455−472 (1988).
24. Yielding, G. et al. Spec. Publs geol. Soc. Lond. (in the press).



© 1991 Nature Publishing Group
Privacy Policy