Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Melt droplet formation in energetic impact events

Abstract

IT has long been known that impact between rocky bodies at velocities of 15 km s−1 can melt or vaporize both the impacting object and a portion of the target1. We have recently shown2,3 that geological materials initially shocked to high pressure approach the liquid–vapour phase boundary from the liquid side as they decompress, breaking up into an expanding spray of liquid droplets. Here we present a simple theory for estimating the sizes of these droplets as a function of impactor size and velocity, and show that these sizes are consistent with observations of microtektites and spherules found in the Cretaceous/Tertiary boundary layer.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Ahrens, T. J. & O'Keefe, J. D. The Moon 4, 214–249 (1972).

    Article  ADS  Google Scholar 

  2. Melosh, H. J. in Origin of the Earth (eds Jones, J. H. & Newsom, H. E.) 69–83 (Oxford University Press, New York, 1990).

    Google Scholar 

  3. Vickery, A. M. Eos 71, 1429 (1990).

    Google Scholar 

  4. Koebert, C. A. Rev. Earth planet. Sci. 14, 323–350 (1986).

    Article  ADS  Google Scholar 

  5. Smit, J. & Klaver, G. Nature 292, 47–49 (1981).

    Article  ADS  CAS  Google Scholar 

  6. Montanari, A. et al. Geology 11, 668–671 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Wallace, M. W., Gostin, V. A. & Keays, R. R. Meteoritics 25, 161–165 (1990).

    Article  ADS  Google Scholar 

  8. Lowe, D. R. & Byerly, G. R. Geology 14, 83–86 (1986).

    Article  ADS  CAS  Google Scholar 

  9. Lowe, D. R., Byerly, G. R., Asaro, F. & Kyte, F. J. Science 245, 959–962 (1989).

    Article  ADS  CAS  Google Scholar 

  10. Nininger, H. H. Arizona's Meteorite Crater 1–232 (American Meteorite Laboratory, Denver, 1956).

    Google Scholar 

  11. Scarlett, B. & Buxton, R. E. Earth planet. Sci. Lett. 22, 177–187 (1974).

    Article  ADS  Google Scholar 

  12. O'Keefe, J. D. & Ahrens, T. J. in Spec. Pap. geol. Soc. Am. 190, 103–120 (1982).

    Google Scholar 

  13. Melosh, H. J. in Spec. Pap. geol. Soc. Am. 190, 121–127 (1982).

    Google Scholar 

  14. Benz, W., Cameron, A. G. W. & Melosh, H. J. Icarus 81, 113–131 (1989).

    Article  ADS  CAS  Google Scholar 

  15. Thompson, S. L. & Lauson, H. S. Improvements in the Chart D Radiation-hydrodynamic CODE III: Revised Analytic Equations of State (Sandia National Laboratory, Albuquerque, 1972).

    Google Scholar 

  16. Melosh, H. J. Impact Cratering: A Geologic Process 1–245 (Oxford University Press, 1989).

    Google Scholar 

  17. Grady, D. E. J. appl. Phys. 53, 322–325 (1982).

    Article  ADS  Google Scholar 

  18. Brunauer, S. & Copeland, L. E. in Handbook of Physics (eds Condon, E. U. & Odishaw, H.) 5.90–5.115 (McGraw-Hill, New York, 1967).

    Google Scholar 

  19. Young, G. A. The Physics of the Base Surge (US Naval Ordnance Laboratory, White Oak, 1965).

    Google Scholar 

  20. Zel'dovich, Y. B. & Raizer, Y. P. The Physics of Shock waves and High Temperature Hydrodynamic Phenomena (Academic, New York, 1967).

    Book  Google Scholar 

  21. Wackerle, J. J. appl. Phys. 33, 922–937 (1962).

    Article  ADS  CAS  Google Scholar 

  22. Glass, B. P., DuBois, D. L. & Ganapathy, R. J. geophys. Res. 90, 425–428 (1982).

    Article  Google Scholar 

  23. Glass, B. P., Burns, C. A., Crosbie, J. R. & DuBois, D. L. J. geophys. Res. 90, 175–196 (1985).

    Article  Google Scholar 

  24. Sanfilippo, A., Riedel, W. R., Glass, B. P. & Kyte, F. T. Nature 314, 613–615 (1985).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Melosh, H., Vickery, A. Melt droplet formation in energetic impact events. Nature 350, 494–497 (1991). https://doi.org/10.1038/350494a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/350494a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing