Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations

Abstract

IT has been suggested1–3 that fertilizing the ocean with iron might offset the continuing increase in atmospheric CO2 by enhancing the biological uptake of carbon, thereby decreasing the surface-ocean partial pressure of CO2and drawing down CO2 from the atmosphere. Using a box model, we present estimates of the maximum possible effect of iron fertilization, assuming that iron is continuously added to the phosphate-rich waters of the Southern Ocean, which corresponds to 16% of the world ocean surface. We find that after 100 years of fertilization, the atmospheric CO2 concentration would be 59 p.p.m. below what it would have been with no fertilization, assuming no anthropogenic CO2 emissions, and 90–107 p.p.m. less when anthropogenic emissions are included in the calculation. Such a large uptake of CO2 is unlikely to be achieved in practice, owing to a variety of constraints that require further study; the effect of iron fertilization on the ecology of the Southern Ocean also remains to be evaluated. Thus, the most effective and reliable strategy for reducing future increases in atmospheric CO2 continues to be control of anthropogenic emissions.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Booth, W. Washington Post. A1 (20 May 1990).

  2. Baum, R. Chem. Engng News 68, 21–24 (1990).

    Article  Google Scholar 

  3. Martin, J. H., Fitzwater, S. E. & Gordon, R. M. Global biogeochem. Cycles 4, 5–12 (1990).

    Article  ADS  CAS  Google Scholar 

  4. Knox, F. & McElroy, M. B. J. geophys. Res. 84, 2503–2518 (1984).

    Google Scholar 

  5. Siegenthaler, U. & Wenk, T. Nature 308, 624–626 (1984).

    Article  ADS  CAS  Google Scholar 

  6. Sarmiento, J. L. & Toggweiler, J. R. Nature 308, 621–624 (1984).

    Article  ADS  CAS  Google Scholar 

  7. Sarmiento, J. L., Toggweiler, J. R. & Najjar, R. Phil. Trans. R. Soc. A325, 3–21 (1988).

    Article  ADS  Google Scholar 

  8. Martin, J. H. & Fitzwater, S. E. Nature 331, 341–343 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Martin, J. H. & Gordon, R. M. Deep-Sea Res. 35, 177–196 (1988).

    Article  ADS  CAS  Google Scholar 

  10. Martin J. H., Gordon, R. M., Fitzwater, S. & Broenkow, W. W. Deep-Sea Res. 36, 649–680 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Martin, J. H. Paleoceanography 5, 1–13 (1990).

    Article  ADS  Google Scholar 

  12. de Baar, H. J. W. et al. Mar. Ecol. Prog Ser. 65, 105–122 (1990).

    Article  ADS  CAS  Google Scholar 

  13. Banse, K. Limnol. Oceanogr. 35, 772–775 (1990).

    Article  ADS  CAS  Google Scholar 

  14. Dugdale, R. C., & Wilkerson, F. P. Global biogeochem. Cycles 4, 13–20 (1990).

    Article  ADS  CAS  Google Scholar 

  15. Anderson, G. C. & Morel, F. M. M. Limnol. Oceanogr. 27, 789–813 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Morel, F. M., & Hudson, R. J. in Chemical Processes in Lakes (ed. Stumm, W.) 251,–270 (Wiley, New York, 1985).

    Google Scholar 

  17. Peng, T.-H. & Broecker, W. S. Nature 349, 227–229 (1991).

    Article  ADS  CAS  Google Scholar 

  18. Toggweiler, J. R. & Sarmiento, J. L. in The Carbon Cycle and Atmospheric CO2: Natural variations Archean to Present Vol. 32, Geophysical Monograph Series (eds. Sundquist, E. T. & Broecker, W. S.) 163–184 (American Geophysical Union, Washington, DC, 1985).

    Google Scholar 

  19. Broecker, W. S. Peng, T.-H., Östlund, G. & Stuiver, M. J. geophys Res. 90, 6953–6970 (1985).

    Article  ADS  CAS  Google Scholar 

  20. Weiss, R. F., Bullister, J. L., Warner, M. J., Van Woy, F. A. & Salameh, P. K. Ajax Expedition Chlorofluorcarbon Measurements (Scripps Institution of Oceanography Reference 90–6, La Jolla, 1990).

    Google Scholar 

  21. Broecker, W. S. Global biogeochem. Cycles 4, 1–2 (1990).

    Article  ADS  Google Scholar 

  22. Houghton, J. T., Jenkins, G. J. & Ephraums, J. J. (eds) Climate Change, The IPCC Scientific Assessment (Cambridg, University Press, 1990).

  23. Siegenthaler, U. & Oeschger, H. Tellus 39B, 140–154 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Peng, T. H., Takashi T. & Broecker, W. S. Tellus 39B, 439–458 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Joos, F., Sarmiento, J. & Siegenthaler, U. Estimates of the effect of Southern Ocean iron fertilization on atmospheric CO2 concentrations. Nature 349, 772–775 (1991). https://doi.org/10.1038/349772a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/349772a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing