Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Geometric effects of deuteration on hydrogen-ordering phase transitions

Abstract

IT has long been known that the substitution of deuterium for hydrogen in hydrogen-bonded materials can lead to a change in the geometry of the hydrogen bonds—the so-called Ubbelohde effect1. There can also be significant accompanying changes in the physical properties of the material. Among the most striking examples is the increase in the transition temperature, Tc, of hydrogen-ordering systems of the KH2PO4 type by >100K on full deuteration. In all of these systems, Tc decreases under pressure, making it possible in principle to compare protonated and deuterated forms at the same Tc by applying pressure to the latter. Here we report the results of a high-pressure neutron diffraction study of the deuterated H(D)-ordering material PbDPO4. We find that much, and possibly all, of the increase in Tc on deuteration is attributable to the accompanying changes in the hydrogen-bond dimensions. This suggests that purely mass-dependent effects on the quantum-mechanical tunnelling between the equivalent H(D) potential minima—an explanation that has been favoured previously—have little or no direct influence on Tc. Substantial revisions to the theory of this type of ordering transition are apparently required.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Robertson, J. M. & Ubbelohde, A. R. Proc. R. Soc. A170, 222–240 (1939).

    ADS  CAS  Google Scholar 

  2. Blinc, R. J. Phys. Chem. Solids 13, 204–211 (1960).

    Article  ADS  CAS  Google Scholar 

  3. Tokunaga, M. & Matsubara, T. Ferroelectrics 72, 175–191 (1987).

    Article  CAS  Google Scholar 

  4. Tun, Z., Nelmes, R. J., Kuhs, W. F. & Stansfield, R. F. D. J. Phys. C21, 245–258 (1988).

    ADS  MathSciNet  CAS  Google Scholar 

  5. Tibballs, J. E., Nelmes, R. J. & Mclntyre, G. J. J. Phys. C15, 37–58 (1982).

    ADS  CAS  Google Scholar 

  6. Tibballs, J. E. & Nelmes, R. J. J. Phys. C15, 849–853 (1982).

    ADS  MathSciNet  Google Scholar 

  7. Samara, G. A. Ferroelectrics 71, 161–182 (1987).

    Article  CAS  Google Scholar 

  8. Silsbee, H. B., Uehling, E. A. & Schmidt, V. H. Phys. Rev. A133, 165–170 (1964).

    Article  ADS  CAS  Google Scholar 

  9. Ichikawa, M., Motida, K. & Yamada, N., Phys. Rev. B36, 874–876 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Samara, G. A. & Semmingsen, D. J. chem. Phys. 71, 1401–1407 (1979).

    Article  ADS  CAS  Google Scholar 

  11. Nelmes, R. J. J. Phys. C21, L881–L886 (1988).

    ADS  CAS  Google Scholar 

  12. Katrusiak, A. & Nelmes, R. J. J. Phys. C19, L765–L772 (1986).

    ADS  CAS  Google Scholar 

  13. Negran, T. J. et al. Ferroelectrics 6, 179–182 (1974).

    Article  CAS  Google Scholar 

  14. Mylov, V. P., Shirokov, A. M., Shuvalov, L. A., Kharitonov, V. N. & Brzhezina, B. Soviet Phys. Crystallogr. 24, 738–739 (1979).

    Google Scholar 

  15. Kuhs, W. F., Ahsbahs, H., Londono, D. & Finney, J. L. Physica B156/157, 684–687 (1989).

    Article  Google Scholar 

  16. Zucker, U. H., Perenthaler, E., Kuhs, W. F., Bachmann, R. & Schulz, H., J. appl. Cryst. 16, 358 (1983).

    Article  CAS  Google Scholar 

  17. Piltz, R. O., McMahon, M. I. & Nelmes, R. J. Ferroelectrics 108, 271–276 (1990).

    Article  CAS  Google Scholar 

  18. Lawrence, M. C. & Robertson, G. N. J. Phys. C13, 1053–1059 (1980).

    ADS  Google Scholar 

  19. Matsubara, T. & Matsushita, E. Prog. theor. Phys. 71, 209–11 (1984).

    Article  ADS  CAS  Google Scholar 

  20. McMahon, M. I., Piltz, R. O. & Nelmes, R. J. Ferroelectrics 108, 277–282 (1990).

    Article  CAS  Google Scholar 

  21. Kojyo, N. & Onodera, Y. J. phys. Soc. Japan 57, 4391–4402 (1988).

    Article  ADS  CAS  Google Scholar 

  22. Lockwood, D. J., Ohno, N., Nelmes, R. J. & Arend, H., J. Phys. C18, L559–L565 (1985).

    ADS  CAS  Google Scholar 

  23. Motida, K. & Ichikawa, M. J. phys. Soc. Japan 58, 2810–2816 (1989).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McMahon, M., Nelmes, R., Kuhst, W. et al. Geometric effects of deuteration on hydrogen-ordering phase transitions. Nature 348, 317–319 (1990). https://doi.org/10.1038/348317a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/348317a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing