Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Genetic loads and estimates of mutation rates in highly inbred plant populations

Abstract

ESTIMATES of the rate of mutation to mildly deleterious alleles are fundamental to the testing of theories of the maintenance of sexual reproduction1 and recombination2,3. There are, however, few estimates of this parameter4,5. We suggest that data on inbreeding depression in highly self-fertilizing populations might provide such estimates. The effect of inbreeding in reducing genetic load and inbreeding depression is well known6,7, but little attention has been paid to the magnitude of these quantities in highly inbred natural populations. Modelling of mutational load shows that highly self-fertilizing populations should still have some genetic load and inbreeding depression8–10. In such populations, inbreeding depression is the converse of heterosis and its magnitude can be estimated from the increase in fitness-related characteristics in individuals produced by intercrossing different strains. Here we derive the inbreeding depression expected in completely inbred populations, and use it to estimate mutation rates per genome for some plant species.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kondrashov, A. S. Genetics 111, 635–653 (1985).

    Article  CAS  Google Scholar 

  2. Kondrashov, A. S. Genet. Res. 44, 199–217 (1984).

    Article  CAS  Google Scholar 

  3. Charlesworth, B. Genet Res. 55, 199–222 (1990).

    Article  CAS  Google Scholar 

  4. Crow, J. F. & Simmons, M. J. in The Genetics and Biology of Drosophila (eds Ashburner, M., Carson, H. L. & Thompson, J. N.) 1–35 (Academic, London, 1983).

    Google Scholar 

  5. Kondrashov, A. S. Nature 336, 435–440 (1988).

    Article  ADS  CAS  Google Scholar 

  6. Crow, J. F. in Mathematical Models in Population Genetics (ed. Kojima, K.-I.) 128–177 (Springer, Berlin, 1970).

    Book  Google Scholar 

  7. Lande, R. & Schemske, D. W. Evolution 39, 24–40 (1985).

    PubMed  Google Scholar 

  8. Charlesworth, D. & Charlesworth, B. A. Rev. Ecol. Syst. 18, 237–268 (1987).

    Article  Google Scholar 

  9. Charlesworth, D., Morgan, M. T. & Charlesworth, B. Evolution (in the press).

  10. Charlesworth, B., Morgan, M. T. & Charlesworth, D. Genet. Res. (in the press).

  11. Heller, J. & Maynard Smith, J. Genet Res. 32, 289–293 (1979).

    Article  Google Scholar 

  12. Hopf, F. A., Michod, R. E. & Sanderson, M. J. Theoret. Populat. Biol. 33, 243–265 (1988).

    Article  CAS  Google Scholar 

  13. Kimura, M. & Ohta, T. Theoretical Topics in Population Genetics (Princeton University Press, Princeton, New Jersey, 1971).

    MATH  Google Scholar 

  14. Houle, D. Genetics 123, 789–801 (1989).

    Article  CAS  Google Scholar 

  15. Ohnishi, O. Japanese J. Genet. 57, 623–639 (1982).

    Article  Google Scholar 

  16. Mukai, T. in Population Genetics and Molecular Evolution (eds Ohta, T. & Aoki, K.-I.) 125–145 (Springer, Berlin, 1985).

    Google Scholar 

  17. Klekowski, E. J. & Godfrey, P. J. Nature 340, 389–391 (1989).

    Article  ADS  Google Scholar 

  18. Matzinger, D. F. in Statistical Genetics and Plant Breeding (eds Hanson, W. D. & Robinson, H. F.) 253–279 (NAS-NRC, Washington, DC, 1963).

    Google Scholar 

  19. Wright, S. Evolution and the Genetics of Populations, Vol. 3. Experimental Results and Evolutionary Deductions (Univ. Chicago Press, Chicago, 1977).

    Google Scholar 

  20. Griffing, B. & Langridge, J. in Statistical Genetics and Plant Breeding (eds Hanson, W. D. & Robinson, H. F. ) 368–394 (NAS-NRC, Washington DC 1963).

    Google Scholar 

  21. Griffing, B. Genetics 122, 943–956 (1989).

    Article  CAS  Google Scholar 

  22. Abbott, R. J. & Gomes, M. F. Heredity 62, 411–418 (1988).

    Article  Google Scholar 

  23. Snape, J. W. & Lawrence, M.J. Heredity 27, 299–302 (1971).

    Article  Google Scholar 

  24. Riley, R. New Phytol. 55, 319–330 (1956).

    Article  Google Scholar 

  25. Schmitt, J. & Erhardt, D. W. Evolution 44, 269–278 (1990).

    Article  Google Scholar 

  26. Schmitt, J., Eccleston, J. & Ehrhardt, D. W. Oecologia 72, 341–347 (1987).

    Article  ADS  CAS  Google Scholar 

  27. Imam, A. G. & Allard, R. W. Genetics 51, 49–62 (1965).

    Article  CAS  Google Scholar 

  28. Svensson, L. Evol. Trends Plants 2, 31–39 (1988).

    Google Scholar 

  29. Kimura, M. & Maruyama, T. Genetics 54, 1337–1351 (1966).

    Article  CAS  Google Scholar 

  30. Sved, J. & Wilton, A. N. Genet Res. 54, 119–128 (1989).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Charlesworth, B., Charlesworth, D. & Morgan, M. Genetic loads and estimates of mutation rates in highly inbred plant populations. Nature 347, 380–382 (1990). https://doi.org/10.1038/347380a0

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/347380a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing