Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Telomere reduction in human colorectal carcinoma and with ageing

Abstract

WE have hypothesized that end-to-end chromosome fusions observed in some tumours could play a part in genetic instability associated with tumorigenesis and that fusion may result from the loss of the long stretches of G-rich repeats found at the ends of all linear chromosomes1. We therefore asked whether there is telomere loss or reduction in common tumours. Here we show that in most of the colorectal carcinomas that we analysed, there is a reduction in the length of telomere repeat arrays relative to the normal colonic mucosa from the same patient. We speculate on the consequences of this loss for tumorigenesis. We also show that the telomere arrays are much smaller in colonic mucosa and blood than in fetal tissue and sperm, and that there is a reduction in average telomere length with age in blood and colon mucosa. We propose that the telomerase2–4 is inactive in somatic tissues, and that telomere length is an indicator of the number of cell divisions that it has taken to form a particular tissue and possibly to generate tumours.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hastie, N. D. & Allshire, R. C. Trends Genet. 5, 326–331 (1989).

    Article  CAS  PubMed  Google Scholar 

  2. Greider, C. W. & Blackburn, E. H. Cell 43, 405–413 (1985).

    Article  CAS  PubMed  Google Scholar 

  3. Greider, C. W. & Blackburn, E. H. Nature 337, 331–337 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  4. Morin, G. B. Cell 59, 521–529 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Allshire, R. C. et al. Nature 332, 656–659 (1988).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Moyzis, R. K. et al. Proc. natn. Acad. Sci. U.S.A. 85, 6222–6626 (1988).

    Article  Google Scholar 

  7. Allshire, R. C., Dempster, M. & Hastie, N. D. Nucleic Acids Res. 17, 4611–4627 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Brown, W. R. A. Nature 338, 774–776 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Cross, S. H., Allshire, R. C., McKay, S., McGill, N. & Cooke, H. J. Nature 338, 771–774 (1989).

    Article  ADS  CAS  Google Scholar 

  10. de Lange, T. et al. Molec. cell Biol. 10, 518–527 (1990).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Cooke, H. J. & Smith, B. A. Cold Spring Harb. Symp. quant. Biol 6, 213–219 (1986).

    Article  Google Scholar 

  12. Potten, C. S. & Morris, R. J. J. Cell Sci. Suppl. 10, 45–62 (1988).

    Article  CAS  PubMed  Google Scholar 

  13. Levis, R. W. Cell 58, 791–801 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. Lundblad, V. & Szostak, J. W. Cell 57, 633–643 (1989).

    Article  CAS  PubMed  Google Scholar 

  15. McClintock, B. Genetics 26, 234–282 (1941).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Larson, D. D., Spangler, E. A. & Blackburn, E. H. Cell 50, 477–483 (1987).

    Article  CAS  PubMed  Google Scholar 

  17. McClintock, B. Cold Spring Harb. Symp. Quant. Biol. 16, 13–49 (1951).

    Article  CAS  PubMed  Google Scholar 

  18. Benn, P. A. Am. J. Hum. Genet. 28, 465–473 (1976).

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Harley, C. B., Futcher, A. B. & Greider, C. W. Nature 345, 458–460 (1990).

    Article  ADS  CAS  PubMed  Google Scholar 

  20. Mandahl, N. et al. Hum. Genet. 71, 321–324 (1985).

    Article  CAS  PubMed  Google Scholar 

  21. Dewald, C. W. et al. Mayo Clin. Proc. 62, 558–567 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Kovacks, G., Muller-Brechlin, R. & Szucs, S. Cancer Genet Cytogenet 28, 363–365 (1987).

    Article  Google Scholar 

  23. Morgan, R. et al. Hum. Genet. 73, 260–263 (1986).

    Article  CAS  PubMed  Google Scholar 

  24. Kaufman, R. J., Sharp, P. A. & Latt, S. A. Molec. cell Biol. 3, 699–711 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Vogelstein, B. et al. New Engl. J. Med. 319, 525–532 (1988).

    Article  CAS  PubMed  Google Scholar 

  26. Vogelstein, B. et al. Science 244, 207–211 (1989).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hastie, N., Dempster, M., Dunlop, M. et al. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346, 866–868 (1990). https://doi.org/10.1038/346866a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/346866a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing