Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 21 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 344, 864 - 866 (26 April 1990); doi:10.1038/344864a0

Red Queen hypothesis supported by parasitism in sexual and clonal fish

Curtis M. Lively*, Clark Craddock & Robert C. Vrijenhoek

Center for Theoretical and Applied Genetics, Cook College, Rutgers University, New Brunswick, New Jersey 08903-0231, USA
* Present address: Department of Biology, Indiana University, Bloomington, Indiana 47405, USA.

THE Red Queen hypothesis for the maintenance of biparental sexual reproduction suggests that, for species locked in revolutionary struggles with biological enemies, the production of variable progeny compensates for the genetic or ecological disadvantages of sex1–7. The advantage of sex and recombination under this hypothesis stems from the production of rare phenotypes, which are expected to be more likely to escape infection or predation by coevolved biological enemies. Like many evolutionary hypotheses, the Red Queen hypothesis is difficult to test directly, but its assumptions and predictions can be evaluated7–18. The most critical assumption is that biological enemies will disproportionately attack the most common phenotype19, 20. In this study of parasite loads of coexisting sexual and clonal fish, we find empirical support for this assumption.

------------------

References

1. Levin, D. Am. Nat. 109, 437−451 (1975). | Article | ISI |
2. Jaenike, J. Evol. Theory 3, 191−194 (1978).
3. Glesener, R. R. & Tilman, D. Am. Nat. 112, 659−673 (1978). | Article | ISI |
4. Bremermann, H. J. J. theor. Biol. 87, 641−702 (1980).
5. Hamilton, W. D. Oikos 35, 282−290 (1980). | ISI |
6. Lloyd, D. G. in Evolutionary Biology Vol. 13 (eds Hecht, M. K., Steere, W. C. & Wallace, B.) 69−111 (Plenum, New York, 1980).
7. Bell, G. The Masterpiece of Nature (University of California Press, Berkeley, 1982).
8. Antonovics, J. & Ellstrand, N. C. Evolution 38, 103−115 (1984).
9. Ellstrand, N. C. & Antonovics, J. Evolution 39, 657−666 (1985).
10. Schmitt, J. & Antonovics, J. Evolution 40, 830−836 (1986).
11. Parker, M. A. Am. J. Bot. 74, 1758−1763 (1987).
12. Burt, A. & Bell, G. Nature 326, 803−805 (1987). | Article | PubMed | ISI | ChemPort |
13. Lively, C. M. Nature 328, 519−521 (1987). | Article | ISI |
14. Kelley, S. E., Antonovics, J. & Schmitt, J. Nature 331, 714−716 (1988). | Article |
15. Parker, M. A. Evolution 43, 540−547 (1989).
16. Lively, C. M. Evolution 43, 1663−1671 (1989).
17. Williams, G. C. Sex and Evolution (Princeton University Press, 1975).
18. Maynard Smith, J. The Evolution of Sex (Cambridge University Press, 1978).
19. Haldane, J. B. S. La Ricerca Scientifica (Suppl.) 19, 68−76 (1949).
20. Clarke, B. in Genetic Aspects of Host-Parasite Relationships Vol. 14 (eds Taylor, A. E. R. & Muller, R.) 87−103 (Blackwell Scientific, Oxford, 1976).
21. Schultz, R. J. Am. Nat. 103, 605−619 (1967).
22. Vrijenhoek, R. C. Science 199, 549−552 (1978).
23. Moore, W. S. Copeia 1977, 213−223 (1977).
24. Cheng, T. C. General Parasitology 2nd edn (Academic, Orlando, Florida, 1986).
25. Wakelin, D. in Ecology and Genetics of Host-Parasite Interactions (eds Rollinson, D. & Anderson, R. M.) 39−54 (Academic, London, 1985).
26. Vrijenhoek, R. C. in Speciation and its Consequences (eds Otte, D. & Endler, J. A.) 386−400 (Sinauer, Sunderland, Massachusetts, 1989).
27. Vrijenhoek, R. C. & Lerman, S. Evolution 36, 768−776 (1982). | ISI |
28. Apple, J. L. in Plant Disease Vol. 1 (eds Harsfall, J. G. & Cowling, E. B.) 79−101 (Academic, New York, 1977).
29. Freund, R. J. & Littell, R. C. SAS for Linear Models (SAS Institute, Cary, North Carolina, 1981).
30. Sokal, R. R. & Rohlf, F. J. Biometry 2nd edn (Freeman, San Francisco, 1981).



© 1990 Nature Publishing Group
Privacy Policy