Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Effect of cell history on response to helix–loop–helix family of myogenic regulators

Abstract

IN multinucleated heterokaryons formed from the fusion of differentiated muscle cells to either hepatocytes or fibroblasts, muscle-specific gene expression is activated, liver-specific gene expression is repressed, and there are changes in the location of the Golgi apparatus1–3. An understanding of the regulatory mechanisms that underlie this plasticity is of particular interest given the stability of the differentiated state in vivo. We have now investigated whether MyoD or myogenin, regulators of muscle-specific gene expression that have a helix–loop–helix motif4–7, can induce the phenotypic conversion observed in heterokaryons. When these regulators were stably or transiently introduced into fibro-blasts or hepatocytes by microinjection, transfection or retroviral infection with complementary DNA in expression vectors, fibro-blasts expressed muscle-specific genes, whereas hepatocytes did not. However, fusion of hepatocytes stably expressing MyoD to fibro-blasts resulted in activation in the heterokaryon of muscle-specific genes of both cell types. These results imply that other regulators, present in fibroblasts but not in hepatocytes, are necessary for the activation of muscle-specific genes, and indicate that the differentiated state of a cell is dictated by its history and a dynamic interaction among the proteins that it contains.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blau, H. M., Chiu, C.-P. & Webster, C. Cell 32, 1171–1180 (1983).

    Article  CAS  Google Scholar 

  2. Blau, H. M. et al. Science 230, 758–766 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Miller, S. C., Pavlath, G. K., Blakely, B. T. & Blau, H. M. Genes Dev. 2, 330–340 (1988).

    Article  CAS  Google Scholar 

  4. Davis, R. L., Weintraub, H. & Lassar, A. B. Cell 51, 987–1000 (1987).

    Article  CAS  Google Scholar 

  5. Wright, W. E., Sassoon, D. A. & Lin, V. K. Cell 56, 607–617 (1989).

    Article  CAS  Google Scholar 

  6. Edmondson, D. G. & Olson, E. N. Genes Dev. 3, 628–640 (1989).

    Article  CAS  Google Scholar 

  7. Murre, C., McCaw, P. S. & Baltimore, D. Cell 56, 777–783 (1989).

    Article  CAS  Google Scholar 

  8. Darlington, G. J. Meth. Enzym. 151, 19–38 (1987).

    Article  CAS  Google Scholar 

  9. Darlington, G. J., Kelly, J. H. & Buffone, G. J. In Vitro Cell devl Biol. 23, 349–354 (1987).

    Article  CAS  Google Scholar 

  10. Pavlath, G. K., Rich, K., Webster, S. G. & Blau, H. M. Nature 337, 570–573 (1989).

    Article  ADS  CAS  Google Scholar 

  11. Killary, A. M. & Fournier, R. E. K. Cell 38, 523–534 (1984).

    Article  CAS  Google Scholar 

  12. Pavlath, G. K. & Blau, H. M. J. Cell Biol. 102, 124–130 (1986).

    Article  CAS  Google Scholar 

  13. Weintraub, H. et al. Proc. natn. Acad. Sci. U.S.A. 86, 5434–5438 (1989).

    Article  ADS  CAS  Google Scholar 

  14. Patek, P. Q., Collins, J. L. & Cohn, M. Nature 276, 510–511 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Lin, Z.-Y., Dechesne, C. A., Eldridge, J. & Paterson, B. M. Genes Dev. 3, 986–996 (1989).

    Article  CAS  Google Scholar 

  16. Julius, D., Livelli, T. J. Jessell, T. M. & Axel, R. Science 244, 1057–1062 (1989).

    Article  ADS  CAS  Google Scholar 

  17. Whitman, M. & Melton, D. A. Science 244, 803–806 (1989).

    Article  ADS  CAS  Google Scholar 

  18. Landschulz, W. H., Johnson, P. F. & McKnight, S. L. Science 243, 1681–1688 (1989).

    Article  ADS  CAS  Google Scholar 

  19. Braun, T., Buschhausen-Denker, G., Bober, E., Tannich, E. & Arnold, H. H. EMBO J. 8, 701–709 (1989).

    Article  CAS  Google Scholar 

  20. Murre, C. et al. Cell 58, 537–544 (1989).

    Article  CAS  Google Scholar 

  21. Zamoyska, R., Vollmer, A., Sizer, K., Liaw, C. & Parnes, J. Cell 43, 153–163 (1985).

    Article  CAS  Google Scholar 

  22. Ledbetter, Z. & Herzenberg, L. Immunol. Rev. 47, 63–90 (1979).

    Article  CAS  Google Scholar 

  23. Price, J., Turner, D. and Cepko, C. Proc. natn. Acad. Sci. U.S.A. 84, 156–160 (1987).

    Article  ADS  CAS  Google Scholar 

  24. Walsh, F. S., Dickson, G., Moore, S. E. & Barton, C. H. Nature 339, 516 (1989).

    Article  ADS  CAS  Google Scholar 

  25. Chiu, C.-P. & Blau, H. M. Cell 37, 879–887 (1984).

    Article  CAS  Google Scholar 

  26. Lessard, J. L. Cell Mot. Cytoskel. 10, 349–362 (1988).

    Article  CAS  Google Scholar 

  27. Berger, E. G. & Hesford, F. J. Proc. natn. Acad. Sci. U.S.A. 82, 4736–4739 (1985).

    Article  ADS  CAS  Google Scholar 

  28. Silberstein, L., Webster, S. G., Travis, M. & Blau, H. M. Cell 46, 1075–1081 (1986).

    Article  CAS  Google Scholar 

  29. Spizz, G., Roman, D., Strauss, A. & Olson, E. N. J. biol. Chem. 261, 9483–9488 (1986).

    CAS  PubMed  Google Scholar 

  30. Kant, J. A., Lord, S. T. & Crabtree, G. R. Proc. natn. Acad. Sci. U.S.A. 80, 3953–3957 (1983).

    Article  ADS  CAS  Google Scholar 

  31. Tso, J. Y., Sun X.-H., Kao, T.-H. & Wu, R. Nucleic Acid Res. 13, 2485–2502 (1985).

    Article  CAS  Google Scholar 

  32. Gunning, P., Mohun, T., Ng, S.-Y., Ponte, P. & Kedes, L. J. molec. Evol. 20, 202–214 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Tapscott, S.J., Davis, R.L., Thayer, M. J. Cheng, P.-F., Weintraub, H. & Lassar, A. B. Science 242, 405–411 (1988).

    Article  ADS  CAS  Google Scholar 

  34. Peterson, C. A., Gordon, H., Hall, Z. W., Paterson, B. M. & Blau, H. M. Cell (in the press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Schäfer, B., Blakely, B., Darlington, G. et al. Effect of cell history on response to helix–loop–helix family of myogenic regulators. Nature 344, 454–458 (1990). https://doi.org/10.1038/344454a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/344454a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing