Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Friday 20 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 344, 324 - 327 (22 March 1990); doi:10.1038/344324a0

Natural variability of the climate system and detection of the greenhouse effect

T. M. L. Wigley & S. C. B. Raper

Climatic Research Unit, University of East Anglia, Norwich NR4 7TJ, UK

GLOBAL mean temperatures show considerable variability on all timescales. The causes of this variability are usually classified as external or internal1, and the variations themselves may be usefully subdivided into low-frequency variability (timescale = 10 years) and high-frequency variability (=10 years). Virtually nothing is known about the nature or magnitude of internally generated, low-frequency variability. There is some evidence from models, however, that this variability may be quite large1,2, possibly causing fluctuations in global mean temperature of up to 0.4 °C over periods of thirty years or more (see ref. 2, Fig. 1). Here we show how the ocean may produce low-frequency climate variability by passive modulation of natural forcing, to produce substantial trends in global mean temperature on the century timescale. Simulations with a simple climate model are used to determine the main controls on internally generated low-frequency variability, and show that natural trends of up to 0.3 °C may occur over intervals of up to 100 years. Although the magnitude of such trends is unexpectedly large, it is insufficient to explain the observed global warming during the twentieth century.

------------------

References

1. Robock, A. J. atmos. Sci. 35, 1111−1122 (1978). | Article | ISI |
2. Hansen, J. et al. J. geophys. Res. 93, 9341−9364 (1988). | ChemPort |
3. Jones, P. D., Wigley, T. M. L. & Wright, P. B. Nature 322, 430−434 (1986). | Article |
4. Jones, P. D. Clim. Mon. 17, 80−89 (1989).
5. Kelly, P. M. & Sear, C. B. Nature 311, 740−743 (1984). | Article | ISI |
6. Sear, C. B. Kelly, P. M., Jones, P. D. & Goodess, C. N. Nature 330, 365−367 (1987). | Article | ISI |
7. Bradley, R. S. Clim. Change 12, 221−243 (1988). | Article |
8. Ramanathan, V. et al. Science 243, 57−63 (1989). | ISI |
9. Hoffert, M. I. & Flannery, B. P. in Projecting the Climatic Effects of Increasing Carbon Dioxide (eds MacCracken, M. C. & Luther, F. M.) 149−190 (US Department of Energy. Washington, DC, 1985).
10. Wigley, T. M. L. & Schlesinger, M. E. Nature 315, 649−652 (1985). | Article | ISI | ChemPort |
11. Schlesinger, M. E. Clim. Dynam. 1, 35−51 (1986).
12. Hasselmann, K. Tellus 28, 473−485 (1976). | ISI |
13. Lemke, P. Tellus 29, 385−392 (1977). | ISI |
14. Watts, R. G. J. geophys. Res. 90, 8067−8070 (1985).
15. Lebedeff, S. A. J. geophys. Res. 93, 14243−14255 (1988). | ChemPort |
16. Morantine, M. & Watts, R. G. J. geophys. Res. (in the press).
17. Wigley, T. M. L. & Raper, S. C. B. Nature 330, 127−131 (1987). | Article |
18. Kiehl, J. T. & Dickinson, R. E. J. geophys. Res. 92, 2991−2998 (1987). | ISI | ChemPort |
19. Wigley, T. M. L. Geophys. Res. Lett. 14, 1135−1138 (1987).
20. Ropelewski, C. F. & Jones, P. D. Mon. Weath. Rev. 115, 2161−2165 (1987). | Article | ISI |
21. Wigley, T. M. L. & Jones, P. D. Nature 292, 205−208 (1981). | Article | ISI | ChemPort |
22. Tsonis, A. A. & Elsner, J. B. Geophys. Res. Lett. 16, 795−797 (1989).
23. Gilliland, R. L. & Schneider, S. H. Nature 310, 38−41 (1984). | Article |
24. Harvey, L. D. D. & Schneider, S. H. J. geophys. Res. 90, 2191−2205 (1985).



© 1990 Nature Publishing Group
Privacy Policy