Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 23 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 340, 369 - 371 (03 August 1989); doi:10.1038/340369a0

First-principles prediction of high-temperature superconductivity in metallic hydrogen

T. W. Barbee III, Alberto García & Marvin L. Cohen

Department of Physics, University of California, Berkeley and Materials and Chemical Sciences Division, Lawrence Berkeley Laboratory,Berkeley, California 94720, USA

AT ambient pressure and low temperatures, hydrogen crystallizes in an insulating molecular phase. The possibility of a transition to a metallic structure at high pressures has been the subject of research for over fifty years1-6. Moreover, it has been recognized for some time that metallic hydrogen could be a superconductor2, but estimates of its transition temperature vary widely4,7,8. Here we present the first ab initio calculation of the electron-phonon coupling constant λ in a distorted hexagonal high-pressure (~400 GPa) phase of hydrogen; this first-principles approach has successfully predicted superconductivity in compressed silicon9,10. From the calculated value of λ for this structure, and using standard BCS-Eliashberg11-13 theory, the superconducting transition temperature Tc is estimated to be 230±85 K. Thus if metallic hydrogen were to be formed in the laboratory in the structure proposed here or in similar structures, it should be superconducting with the highest Tc yet known.

------------------

References

1. Wigner E. & Huntington H. B. J. chem. Phys. 3, 764−770 (1935). | ChemPort |
2. Ashcroft N. W. Phys. Rev. Lett. 21, 1748−1749 (1968). | Article | ISI | ChemPort |
3. Chakravarty S., Rose J. H., Wood D. & Ashcroft N. W. Phys. Rev. B24, 1624−1635 (1981).
4. Min B. I., Jansen H. J. F. & Freeman A. J. Phys. Rev. B30, 5076−5083 (1984).
5. Min B. I., Jansen H. J. F. & Freeman A. J. Phys. Rev. B33, 6383−6390 (1986).
6. Barbee, T. W. III, Garcia A., Cohen M. L. & Martins J. L. Phys. Rev. Lett. 62, 1150−1153 (1989). | Article | PubMed | ISI | ChemPort |
7. Gupta R. P. & Sinha S. K. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 583−592 (Plenum, New York, 1976). | ChemPort |
8. Switendick, A. C. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 593−604 (Plenum, New York, 1976). | ChemPort |
9. Chang K. J. et al. Phys. Rev. Lett. 54, 2375−2378 (1985). | Article | PubMed | ISI | ChemPort |
10. Dacorogna M. M., Chang, K. J. & Cohen, M. L. Phys. Rev. B32, 1853−1855 (1985).
11. Bardeen, J., Cooper, L. N. & Schrieffer J. R. Phys. Rev. 106, 162−164 (1957). | Article | ChemPort |
12. Bardeen J., Cooper L. N. & Schrieffer J. R. Phys. Rev. 108, 1175−1204 (1957). | Article | ISI | ChemPort |
13. Eliashberg G. M. Soviet. Phys. JETP 11, 696−702 (1960).
14. Mao H. K. & Hemley R. J. Science 244, 1462−1465 (1989). | ISI | ChemPort |
15. Cohen M. L. & Anderson P. W. in Superconductivity in d- and f-band Metals (ed. Douglass, D. H.) 17−27 (American Institute of Physics, New York, 1972).
16. Lam P. K., Dacorogna M. M. & Cohen M. L. Phys. Rev. B34, 5065−5069 (1986).
17. McMillan W. L. Phys. Rev. 167, 331−344 (1968). | Article | ISI | ChemPort |
18. Cohen M. L. Physica Scripta T1, 5−10 (1982).
19. Allen P. B. & Dynes R. C. Phys. Rev. B12, 905−922 (1975). | Article | ISI | ChemPort |
20. Allender D., Bray J. & Bardeen J. Phys. Rev. B7, 1020−1029 (1973). | ChemPort |



© 1989 Nature Publishing Group
Privacy Policy