Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 20 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 339, 690 - 691 (29 June 1989); doi:10.1038/339690a0

Calculated fusion rates in isotopic hydrogen molecules

S. E. Koonin* & M. Nauenberg*

Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
*Permanent addresses: W. K. Kellogg Radiation Laboratory, California Institute of Technology 106-38, Padadena, California 91125, USA (S.E.K.); Physics Department and Institute of Nonlinear Sciences, University of California, Santa Cruz, California 95064, USA (M.N.).

COLD fusion occurs when two nuclei with very small relative energy tunnel through their mutual Coulomb barrier to initiate a nuclear reaction. The phenomenon is well studied in muon-catalysed fusion1–4, where a relatively massive muon replaces an electron in a diatomic molecule of hydrogen isotopes, enhancing the binding and producing cold-fusion rates of ~1012 s−1. Cold fusion is also believed to occur as pycno-nuclear reactions in certain astrophysical environments5. Recent reports of cold fusion between hydrogen isotopes embedded in palladium6 and titanium7 have prompted us to reconsider previous estimates of the cold-fusion rates for free diatomic isotopic hydrogen molecules. In particular, we have calculated rates in diatomic hydrogen molecules of various isotopic composition. An accurate Born–Oppenheimer potential was used to calculate the ground-state wavefunctions. We find that the rate for d + d fusion is 3 × 10−64s−1, some 10 orders of magnitude faster than a previous estimate. We also find that the rate for p + d fusion is 10−55s−1, which is larger than the d + d rate because of the enhanced tunnelling in the lighter system. Hypothetical enhancements of the electron mass by factors of 5–10 would be required to bring cold-fusion rates into the range of recently claimed observations.

------------------

References

1. Jackson, J. D. Phys. Rev. 106, 330−339 (1957). | Article | ISI | ChemPort |
2. Zel'dovich, Ya. B. & Gershtein, S. S. Soviet Phys. Usp. 3, 593−623 (1961).
3. Jones, S. E. Nature 321, 127−133 (1986). | Article | ChemPort |
4. Rafelski, J. & Jones, S. E. Scient. Am. 257, 84−89 (1987).
5. Shapiro, S. L. & Teukolsky, S. L. Black Holes, White Dwarfs and Neutron Stars 72−81 (Wiley, New York, 1983).
6. Fleischmann, M., Pons, S. & Hawkins, M. J. electroanalyt. Chem. 261, 301−308 (1989). | Article | ChemPort |
7. Jones, S. E. et al. Nature 338, 737−740 (1989). | Article | ChemPort |
8. Fowler, W. A., Caughlan, G. R. & Zimmerman, B. A. A. Rev. Astr. Astrophys. 5, 525−570 (1967). | Article | ChemPort |
9. Kolos, W. & Wolniewicz, L. J. chem. Phys. 41, 3663−3673 (1964); J. chem. Phys. 49, 404−410 (1968). | Article | ChemPort |
10. Byers-Brown, W. & Power, J. D. Proc. R. Soc. Lond. A 317, 545−574 (1970). | ChemPort |
11. Koonin, S. E. Computational Physics 40−64 (Addison-Wesley, Menlo Park, 1985).
12. Van Siclen, C. D. & Jones, S. E. J. Phys. G 12, 213−221 (1986). | ChemPort |
13. Slater, J. C. Quantum Theory of Molecules and Solids Vol. 1, 18 (McGraw-Hill, New York, 1963).
14. Messiah, A. Quantum Mechanics Vol. II, 786−800 (North-Holland, Amsterdam, 1965).
15. Leggett, A. J. & Baym, G. Nature (in the press).
16. Koonin, S. E. Phys. Rev. Lett. (submitted).
17. Leggett, A. J. & Baym, G. Phys. Rev. Lett. (submitted).
18. Picker, H. Nukleonika 25, 1491−1493 (1980). | ChemPort |



© 1989 Nature Publishing Group
Privacy Policy