Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mantle stratification and long-term polar wander

Abstract

THERE is accumulating evidence1,2 that the average location of the Earth's magnetic pole has moved relative to the deep mantle over the past 200 Myr. This phenomenon of 'true polar wander' may be caused by the advance and retreat of ice sheets3 or by mass redistribution in the Earth's interior due to changes in the pattern of mantle convection4,5. New analyses1,2,6 of polar-wander data show a significant shift of the pole in the late Cretaceous, but this period is thought to have been too warm for glaciation to have occurred. Thus, most of the true polar wander must be due to mass movements in the mantle. Here we show, by analysing the appropriate equations for polar wander, that both viscosity and chemical stratification in the mantle are important in determining the rate of polar wander. The dynamical effects of chemical stratification and high viscosity (>1023 poise) in the lower mantle are to decrease polar-wander speed to a level consistent with the averaged velocities inferred from palaeomagnetic data. Whole-mantle convection models, without non-adiabatic density jumps at 670 km depth and with viscosities less than 1023 P, would produce wandering rates in excess of 5° per Myr.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gordon, R. G. & Livermore, R. A. Geophys. J. R. astr. Soc. 91, 1049–1057 (1987).

    Article  ADS  Google Scholar 

  2. Sager, W. W. & Bleil, U. Nature 326, 488–490 (1987).

    Article  ADS  Google Scholar 

  3. Sabadini, R. & Peltier, W. R. Geophys. J. R. astr. Soc. 66, 533–578 (1981).

    Article  ADS  Google Scholar 

  4. Keondzhyan, V. P. & Monin, A. S. Izv. Phys. Solid Earth 13, 760–772 (1977).

    Google Scholar 

  5. Goldreich, P. & Toomre, A. J. geophys. Res. 74, 2555–2567 (1968).

    Article  ADS  Google Scholar 

  6. Gordon, R. G. A. Rev. Earth planet. Sci. 15, 567–593 (1987).

    Article  ADS  Google Scholar 

  7. Jurdy, D. M. & van der Voo, R. Science 187, 1193–1196 (1975).

    Article  ADS  CAS  Google Scholar 

  8. Jurdy, D. M. Tectonophysics 74, 1–16 (1981).

    Article  ADS  Google Scholar 

  9. Gordon, R. G. Geophys. Res. Lett. 10, 709–712 (1983).

    Article  ADS  Google Scholar 

  10. Jurdy, D. M. J. geophys. Res. 88, 6395–6402 (1983).

    Article  ADS  Google Scholar 

  11. Sabadini, R., Yuen, D. A. & Boschi, E. J. geophys. Res. 89, 7609–7620 (1984).

    Article  ADS  Google Scholar 

  12. Munk, W. H. & MacDonald, G. J. F. The Rotation of the Earth (Cambridge University Press, 1960).

    MATH  Google Scholar 

  13. Burgers, J. M. Proc. K. ned. Akad. Wet. 58, 219–237, 1955.

    Google Scholar 

  14. Yuen, D. A. Sabadini, R. & Boschi, E. V. J. geophys. Res. 87, 10 745–10 762 (1982).

    Article  ADS  Google Scholar 

  15. Christensen, U. R. J. geophys. Res. 90, 11 312–11 318 (1985).

    Article  ADS  Google Scholar 

  16. Christensen, U. R. & Yuen, D. A. J. geophys. Res. 90, 10 291–10 300 (1985).

    Article  ADS  Google Scholar 

  17. Wu, P. & Peltier, W. R. Geophys. J. R. astr. Soc. 76, 753–791 (1984).

    Article  ADS  Google Scholar 

  18. Anderson, D. L. & Bass, J. D. Nature 320, 321–328 (1986).

    Article  ADS  CAS  Google Scholar 

  19. Hager, B. H. J. geophys. Res. 89, 6003–6015 (1984).

    Article  ADS  Google Scholar 

  20. Turcotte, D. L. Geophys. J. R. astr. Soc. 36, 33–42 (1974).

    Article  ADS  Google Scholar 

  21. Dickman, S. R. & Williams, D. R. Geophys. Res. Lett. 8, 199–202 (1981).

    Article  ADS  Google Scholar 

  22. Richards, M. A. & Hager, B. H. J. geophys. Res. 89, 5987–6002 (1984).

    Article  ADS  Google Scholar 

  23. Ricard, Y., Fleitout, L. M. & Froidevaux, C. Ann. Geophys. 2, 267–286 (1984).

    ADS  Google Scholar 

  24. Heiskanen, W. A. & Moritz, H. Physical Geology Ch. 2 (Freeman, San Francisco, 1967).

    Google Scholar 

  25. Anderson, D. L. J. geophys. Res. 92, 13 968–13 980 (1987).

    Article  ADS  CAS  Google Scholar 

  26. Yuen, D. A., Sabadini, R. C. A., Gasperini, P. & Boschi, E. V. J. geophys. Res. 91, 11420–11438 (1986).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sabadini, R., Yuen, D. Mantle stratification and long-term polar wander. Nature 339, 373–375 (1989). https://doi.org/10.1038/339373a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339373a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing