Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Possible climate change due to SO2-derived cloud condensation nuclei

Abstract

IT has been hypothesized that climate may be noticeably affected by changes in cloud condensation nuclei (CCN) concentrations, caused either by changes in the flux of dimethylsulphide (DMS) from the oceans1,2 and/or by man-made increases in the flux of sulphur dioxide (SO2) into the atmosphere3. When oxidized, the sulphur compounds produce non-sea-salt sulphate (n.s.s.-SO2−4,) aerosols, which may act as CCNs. The CCN changes affect climate by altering the number density and size distribution of droplets in clouds, and hence their albedo. Here I am concerned primarily with the possible effects of SO2. Because the increase in SO2 emissions has been largely in the Northern Hemisphere, this raises the possibility of a cooling of the Northern Hemisphere relative to the Southern3. By comparing observed differences in hemispheric-mean temperatures with results from a simple climate model, one can place limits on the possible magnitude of any SO2-derived forcing. The upper limit is sufficiently large that the effects of SO2 may have significantly offset the temperature changes that have resulted from the greenhouse effect.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655–661 (1987).

    Article  ADS  CAS  Google Scholar 

  2. Mészáros, E. Atmos. Envir. 22, 423–424 (1988).

    Article  Google Scholar 

  3. Schwartz, S. E. Nature 336, 441–445 (1988).

    Article  ADS  Google Scholar 

  4. Neftel, E., Beer, J., Oeschger, H., Zürcher, F. & Finkel, R. C. Nature 314, 611–613 (1985).

    Article  ADS  CAS  Google Scholar 

  5. Mayewski, P. A. et al. Science 232, 975–977 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Möller, D. Atmos. Envir. 18, 19–27 (1984).

    Article  Google Scholar 

  7. Twomey, S. A., Piepgrass, M. & Wolfe, T. L. Tellus 36B, 356–366 (1984).

    Article  ADS  CAS  Google Scholar 

  8. Coakley, J. A. Jr, Bernstein, R. L. & Durkee, P. A. Science 237, 1020–1022 (1987).

    Article  ADS  Google Scholar 

  9. Pruppacher, H. R. & Klett, J. D. Microphysics of Clouds and Precipitation (Reidel, Dordrecht, 1978).

    Book  Google Scholar 

  10. Wigley, T. M. L. Geophys. Res. Lett. 14, 1135–1138 (1987).

    Article  ADS  Google Scholar 

  11. Wigley, T. M. L. & Raper, S. C. B. Nature 330, 127–131 (1987).

    Article  ADS  Google Scholar 

  12. Sear, C. B., Kelly, P. M., Jones, P. D. & Goodess, C. M. Nature 330, 365–367 (1987).

    Article  ADS  Google Scholar 

  13. Schlesinger, M. E. Clim. Dynam. 1, 35–51 (1986).

    Article  ADS  Google Scholar 

  14. Hansen, J. et al. Science 213, 957–966 (1981).

    Article  ADS  CAS  Google Scholar 

  15. Gilliland, R. L. Climatic Change 4, 111–131 (1982).

    Article  ADS  CAS  Google Scholar 

  16. Gilliland, R. L. & Schneider, S. H. Nature 310, 38–41 (1984).

    Article  ADS  Google Scholar 

  17. Vinnikov, K. Ya. & Groisman, P. Ya. Meteorol. i Gidrol. 1981 (11), 30–43 (1981).

    Google Scholar 

  18. Legrand, M. E., Delmas, R. J. & Charlson, R. J. Nature 334, 418–420 (1988).

    Article  ADS  CAS  Google Scholar 

  19. Leaitch, W. R., Strapp, J. W., Isaac, G. A. & Hudson, J. G. Tellus 38B, 328–344 (1986).

    Article  ADS  CAS  Google Scholar 

  20. Folland, C. K., Parker, D. E. & Kates, F. E. Nature 310, 670–673 (1984).

    Article  ADS  Google Scholar 

  21. Woodruff, S. D., Slutz, R. J., Jenne, R. L. & Steurer, P. M. Bull. Am. met. Soc. 68, 1239–1250 (1987).

    Article  Google Scholar 

  22. Jones, P. D., Wigley, T. M. L. & Wright, P. B. Nature 322, 430–434 (1986).

    Article  ADS  Google Scholar 

  23. Jones, P. D. et al. J. Clim. appl. Met. 25, 161–179 (1986).

    Article  Google Scholar 

  24. Jones, P. O., Raper, S. C. B. & Wigley, T. M. L. J. Clim. appl. Met 25, 1213–1230 (1986).

    Article  Google Scholar 

  25. Schlesinger, M. E. & Mitchell, J. F. B. Rev. Geophys. 25, 760–798 (1987).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wigley, T. Possible climate change due to SO2-derived cloud condensation nuclei. Nature 339, 365–367 (1989). https://doi.org/10.1038/339365a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/339365a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing