Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Monday 24 July 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 339, 360 - 362 (01 June 1989); doi:10.1038/339360a0

Universality in colloid aggregation

M. Y. Lin*, H. M. Lindsay, D. A. Weitz*£, R. C. Ball, R. Klein§ & P. Meakin

*Exxon Research and Engineering Co., Route 22E Annandale, New Jersey 08801, USA
Physics Department, Emory University, Atlanta, Georgia 30322, USA
The Cavendish Laboratory, Madingley Road, Cambridge CB3 9HE, UK
§Facultät für Physik, Universität Konstanz, Konstanz, FRG
E. I. DuPont de Nemours Co., Experimental Station, Wilmington, Delaware 19880-0356, USA
Present address: Department of Physics, Princeton University, Princeton, New Jersey 08544, USA.
£To whom correspondence should be addressed.

THE aggregation of colloidal particles is of fundamental importance in colloid science and its applications. The recent application of scaling concepts1,2 has resulted in a much deeper understanding of the structure of colloidal aggregates and the kinetics of their formation. Two distinct, limiting regimes of irreversible colloid aggregation have been identified3. Diffusion-limited colloid aggregation occurs when there is negligible repulsive force between the colloidal particles, so that the aggregation rate is limited solely by the time taken for clusters to encounter each other by diffusion. Reaction-limited colloid aggregation occurs when there is still a substantial, but not insurmountable, repulsive force beween the particles, so that the aggregation rate is limited by the time taken for two clusters to overcome this repulsive barrier by thermal activation. These regimes correspond to the limiting cases of rapid and slow colloid aggregation that have long been recognized in colloid science4. An intriguing possibility suggested by recent work is that each of these limiting regimes of colloid aggregation is universal, independent of the chemical details of the particular colloid system. Here we investigate the aggregation of three chemically different colloidal systems under both diffusion-limited and reaction-limited aggregation conditions. A scaling analysis of light-scattering data is used to compare the behaviour and provides convincing experimental evidence that the two regimes of aggregation are indeed universal.

------------------

References

1. Meakin, P. in Phase Transitions (ed. Liebowitz, J. L.) 12, 335 (Academic, New York, 1988).
2. Jullien, R. & Botet, R. Aggregation and Fractal Aggregates (World Scientific, Singapore, 1987).
3. Weitz, D. A., Huang, J. S., Lin, M. Y. & Sung, J. Phys. Rev. Lett 54, 1416−1419 (1985).
4. Verwey, E. J. W. & Overbeek, J. T. G. Theory of the Stability of Lyophoblc Colloids (Elsevier, Amsterdam, 1948).
5. Cohen, R. J. & Benedek, G. B. J. phys. Chem. 86, 3696−3714 (1982).
6. Vicsek, T. & Family, F. Phys. Rev. Lett. 52, 1669−1672 (1984).
7. Van Dongen, G. J. & Ernst, M. H. Phys. Rev. Lett. 54, 1396−1399 (1985).
8. Ball, R. C., Weitz, D. A., Witten, T. A. & Leyvraz, F. Phys. Rev. Lett. 58, 274−277 (1987).
9. Meakin, P. Phys. Rev. Lett. 51, 1119−1122 (1983).
10. Kolb, M., Botet, R. & Jullien, R. Phys. Rev. Lett. 51, 1123−1126 (1983).
11. Brown, W. D. & Ball, R. C. J. Phys. A18, L517−L519 (1985).
12. Mountain, R. D. & Mulholland, G. W. Langmuir 4, 1321−1326 (1988).
13. Meakin, P., Vicsek, T. & Family, F. Phys. Rev. B31, 564−569 (1985).
14. Meakin, P. & Family, F. Phys. Rev. A36, 5498−5501 (1987).
15. Von Schultess, G. K., Benedek, G. B. & De Blois, R. W. Macromolecules 13, 939−945 (1980).
16. Weitz, D. A. & Oliveria, M. Phys. Rev. Lett. 52, 1433−1436 (1984).
17. Schaefer, D. W., Martin, J. E., Wiltzius, P. & Cannell, D. S. Phys. Rev. Lett. 52, 2371−2374 (1984).
18. Matsushita, M., Hayakawa, Y., Sumida, K. & Sawada, Y. in Science on Form: Proceedings of the First International Conference for Science on Form (ed. Kato, Y., Takaki, R. & Toriwaki, J.) (KTK Scientific Publishers, Tokyo, 1986).
19. Aubert, C. & Cannell, D. S. Phys. Rev. Lett. 56 738−741 (1986).
20. Weitz, D. A. & Lin, M. Y. Phys. Rev. Lett. 57, 2037−2040 (1986).
21. Martin, J. E. Phys. Rev. A36, 3415−3426 (1987).
22. Lindsay, H. M., Klein, R., Weitz, D. A., Lin, M. Y. & Meakin, P. Phys. Rev. A38, 2614−2626 (1988).
23. Chen, Z.-Y., Deutch, J. M. & Meakin, P. J. chem. Phys. 80, 2982−2983 (1984).
24. Hess, W., Frisch, H. L. & Klein, R. Z. Phys. B64, 65−68 (1986).
25. Wiltzius, P. Phys. Rev. Lett. 58, 710−713 (1987).
26. Lin, M. Y. et al. Proc. R. Soc. Lond. A (in the press).
27. Rarity, J. G., Seabrook, R. N. & Carr, R. G., Proc. Roy. Soc. Lond. A (in the press).
28. Buscall, R., Mills, P. D. A., Goodwin, J. W. & Lawson, D. W. J. chem. Soc. Faraday Trans. 1, 4249−4260 (1988).
29. Feder, J., Jossang, T. & Rosenqvist, E. Phys. Rev. Lett. 53, 1403 (1984).
30. Horne, D. S. Faraday Discuss. chem. Soc. 83, 259−270 (1987).
31. Wilcoxon, J. P., Martin, J. E. & Schaefer, D. W. Phys. Rev. A 39, 2675−2688 (1989).



© 1989 Nature Publishing Group
Privacy Policy