Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Fertile transgenic rice plants regenerated from transformed protoplasts

Abstract

THE generation of transgenic plants using gene transfer techniques is important to both the investigation of gene regulation and the genetic engineering of crops1. The Ti plasmid of Agrobacterium tumefaciens is now routinely used to transform dicotyledonous plants2, and the transfer of foreign genes to unorganized tissue3–6and plants7,8 has been accomplished using direct DNA transfer methods9–11. A protocol for the easy and reproducible production of fertile transgenic cereals, however, has not yet been described. We report here the production of fertile transgenic rice plants obtained by introducing the bacterial hph gene, encoding hygromycin B resistance12 (Hmr), into protoplasts of Oryza sativa (L.) by electroporation. The non-selectable gene encoding β-glucuronidase was also transferred with the hph gene and its expression was detected in the progeny of the stable transformant.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schell, J. S. Science 237, 1176–1183 (1987).

    Article  ADS  Google Scholar 

  2. Cocking, E. C. & Davey, M. R. Science 236, 1259–1262 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Potrykus, I. et al. Molec. gen, Genet. 199, 161–168 (1985).

    Article  Google Scholar 

  4. Lörz, H., Baker, B. & Schell, J. Molec. gen. Genet. 199, 178–182 (1985).

    Article  Google Scholar 

  5. Fromm, M., Taylor, L. P. & Walbot, V. Nature 319, 791–793 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Uchimiya, H. et al. Molec. gen. Genet. 205, 461–468 (1986).

    Article  Google Scholar 

  7. de la Pen̄a, A., Lörz, H. & Schell, J. Nature 325, 274–276 (1987).

    Article  ADS  Google Scholar 

  8. Rhodes, C. A., Pierce, D. A., Metller, I. J., Mascarenhas, D. & Detmer, J. Science 240, 204–207 (1988).

    Article  ADS  CAS  Google Scholar 

  9. Davey, M. R. et al. Pl. Sci. Lett. 18, 307–313 (1980).

    Article  ADS  CAS  Google Scholar 

  10. Krens, F. A., Molendijk, L., Wullem, G. L. & Schilperoort, R. A. Nature 296, 72–74 (1982).

    Article  ADS  CAS  Google Scholar 

  11. Paszkowski, J. et al. EMBO J. 3, 2717–2722 (1984).

    Article  CAS  Google Scholar 

  12. Gritz, L. & Davies, J. Gene 25, 179–188 (1983).

    Article  CAS  Google Scholar 

  13. Pietrzak, M., Shillito, R. D., Hohn, T. & Potrykus, I. Nucleic Acids Res. 14, (1986).

  14. Kyozuka, J., Hayashi, Y. & Shimamoto, K. Molec. gen. Genet. 206, 408–413 (1987).

    Article  CAS  Google Scholar 

  15. Ohira, K., Ojima, K. & Fujiwara, A. Pl. Cell Physiol. Tokyo 14, 1113–1121 (1973).

    CAS  Google Scholar 

  16. Chu, C. C. et al. Scientia. sin. 16, 659–688 (1975).

    Google Scholar 

  17. Jefferson, R. A., Kavanagh, T. A. & Bevan, M. W. EMBO J. 6, 3901–3907 (1987).

    Article  CAS  Google Scholar 

  18. Schocher, R. J., Shillito, R. D., Saul, M. W., Paszkowski, J. & Potrykus, I. Biol Technology 4, 1093–1096 (1986).

    CAS  Google Scholar 

  19. Murashige, T. & Skoog, F. Physiologia Pl. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  20. Blochlinger, K. & Diggelmann, H. Molec. cell. Biol. 4, 2929–2931 (1984).

    Article  CAS  Google Scholar 

  21. Walbot, V. & Warren, C. Molec. gen. Genet. 211, 27–34 (1988).

    Article  CAS  Google Scholar 

  22. Southern, E. M. J. molec. Biol. 98, 503–517 (1975).

    Article  CAS  Google Scholar 

  23. Feinberg, A. P. & Vogelstein, B. Analyt. Biochem. 132, 6–13 (1983).

    Article  CAS  Google Scholar 

  24. Jefferson, R. A. Pl. molec. Biol. Rep. 5, 387–405 (1987).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shimamoto, K., Terada, R., Izawa, T. et al. Fertile transgenic rice plants regenerated from transformed protoplasts. Nature 338, 274–276 (1989). https://doi.org/10.1038/338274a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338274a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing