Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum

Abstract

THE calcium channel responsible for the release of Ca2+ from the sarcoplasmic reticulum of skeletal muscle during excitation–contraction coupling has recently been identified and purified1–4,21. The isolated calcium channel has been identified morphologically with the 'foot' structures1,2 which are associated with the junctional face membrane of the terminal cisternae of sarcoplasmic reticulum. In situ, the foot structure extends across the gap of the triad junction from the terminal cisternae of the reticulum to the trans-verse tubule5. We describe here the three-dimensional architecture (3.7 nm resolution) of the calcium channel/foot structure from fast-twitch rabbit skeletal muscle, which we determined from electron micrographs of isolated, non-crystalline structures that had been tilted in the electron microscope. The reconstruction reveals two different faces and an internal structure in which stain accumulates at several interconnected locations, which could empty into the junctional gap of the triad junction. The detailed architecture of the channel complex is relevant to understanding both the physical path followed by calcium ions during excitation–contraction coupling and the association of the terminal cisternae and the transverse tubules in the triad junction.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Inui, M., Saito, A. & Fleischer, S. J. biol. Chem. 262, 1740–1747 (1987).

    CAS  PubMed  Google Scholar 

  2. Inui, M., Saito, A. & Fleischer, S. J. biol. Chem. 262, 15637–15642 (1987).

    CAS  PubMed  Google Scholar 

  3. Lai, F. A., Erickson, H. P., Rouseau, E., Liu, Q. V. & Meissner, G. Nature 331, 315–319 (1988).

    Article  ADS  CAS  Google Scholar 

  4. Imagawa, T., Smith, J. S., Coronado, R. & Campbell, K. P. J. biol. Chem. 262, 16636–16643 (1987).

    CAS  PubMed  Google Scholar 

  5. Franzini-Armstrong, C. & Nunzi, C. J. Muscle Res. cell. Motil. 4, 233–252 (1983).

    Article  CAS  Google Scholar 

  6. Saito, A., Inui, M., Radermacher, M., Frank, J. & Fleischer, S. J. Cell Biol. 107, 211–219 (1988).

    Article  CAS  Google Scholar 

  7. Saito, A., Inui, M. & Fleischer, S. Biophys. J. 53, 605a (1988).

    Google Scholar 

  8. Radermacher, M., Wagenknecht, T., Verschoor, A. & Frank, J. J. Micros. 146, 113–136 (1987).

    Article  CAS  Google Scholar 

  9. Frank, J., Verschoor, A., Wagenknecht, T., Radermacher, M. & Carazo, J. M. Trends biochem. Sci 13, 123–127 (1988).

    Article  CAS  Google Scholar 

  10. Frank, J. Verschoor, A. & Boublik, M. Science 214, 1353–1355 (1981).

    Article  ADS  CAS  Google Scholar 

  11. van Heel, M. & Frank, J. J. Ultramicros. 6, 187–194 (1981).

    CAS  Google Scholar 

  12. Frank, J., Bretaudiere, J. P., Carazo, J. M., Verschoor, A. & Wagenknecht, T. J. Micros. 150, 99–115 (1987).

    Article  Google Scholar 

  13. Block, F. A., Imagawa, T., Campbell, K. P. & Franzini-Armstrong, C. J. Cell Biol. 107, 2587–2600 (1988).

    Article  CAS  Google Scholar 

  14. Saito, A., Seiler, S., Chu, A. & Fleischer, S. J. Cell Biol. 99, 875–885 (1984).

    Article  CAS  Google Scholar 

  15. Saito, A., Inui, M., Wall, J. S. & Fleischer, S. Biophys. J. 55, 206a (1989).

    Google Scholar 

  16. Inui, M. & Fleischer, S. Meth. Enzym. 157, 490–505 (1988).

    Article  CAS  Google Scholar 

  17. Stöffler, G. & Stöffler-Meilicke, M. In Modern Methods in Protein Chemistry (ed. Tschesche, H.) 409–457 (de Gruyter, New York. 1984).

    Google Scholar 

  18. Frank, J., Goldfarb, W., Eisenberg, D. & Baker, T. S. Ultramicroscopy 3, 283–290 (1978).

    Article  CAS  Google Scholar 

  19. Frank, J., Verschoor, A. & Wagenknecht, T. In New Methodologies in Studies of Protein Configuration (ed. Wu, T. T.) 36–89 (Van Nostrand Reinhold, New York, 1985).

    Google Scholar 

  20. Radermacher, M. & Frank, J. J. Microsc. 136, 77–85 (1984).

    Article  CAS  Google Scholar 

  21. Hymel, L., Inui, M., Fleischer, S. & Schindler, H. Proc. natn. Acad. Sci. U.S.A. 85, 441–445 (1988).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wagenknecht, T., Grassucci, R., Frank, J. et al. Three-dimensional architecture of the calcium channel/foot structure of sarcoplasmic reticulum. Nature 338, 167–170 (1989). https://doi.org/10.1038/338167a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/338167a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing