Nature Publishing Group, publisher of Nature, and other science journals and reference works
my account e-alerts subscribe register
Saturday 21 October 2017
Journal Home
Current Issue
Download PDF
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 336, 232 - 234 (17 November 1988); doi:10.1038/336232a0

Where do channels begin?

David R. Montgomery & William E. Dietrich

Department of Geology and Geophysics, University of California, Berkeley, California 94720, USA

The closer channels begin to drainage divides, the greater will be the number of channels that occupy a unit area, and consequently the more finely dissected will be the landscape. Hence, a key component of channel network growth and landscape evolution theories1–7, as well as models for topographically controlled catch-ment runoff8, should be the prediction of where channels begin. Little field data exist, however, either on channel head locations9–14 or on what processes act to initiate and maintain a channel14–17. Here we report observations from several soil-mantled regions of Oregon and California, which show that the source area above the channel head decreases with increasing local valley gradient for slopes ranging from 5 to 45 degrees. Our results support a predicted relationship between source area and slope for steep humid landscapes where channel initiation is by landsliding, but they contradict theoretical predictions for channel initiation by overland flow in gentle valleys. Our data also suggest that, for the same gradient, drier regions tend to have larger source areas.



1. Leopold, L. B. & Langbein, W. B. U.S. Geol. Surv. prof. Paper 500A (1962).
2. Howard, A. D. Geogr. Anal. 3, 29−50 (1971).
3. Abrahams, A. D. Geol. Soc. Am. Bull. 83, 1523−1530 (1972).
4. Kirkby, M. J. in Thresholds in Geomorphology (eds Coates, D. R. & Vitek, J. D.) 53−73 (Allen & Unwin, Boston, 1980).
5. Kochel, R. C., Howard, A. D. & McLean, C. in Models in Geomorphology (ed. Woldenberg, M. J.) 313−341 (Allen & Unwin, Boston, 1985).
6. Dunne, T. & Aubry, B. in Hillslope Processes (ed. Abrahams, A. D.) 31−53 (Allen & Unwin, Boston, 1986).
7. Willgoose, G. R., Bras, R. L. & Rodriguez-Iturbe, I. EOS 69, 345 (1988).
8. Beven, K. J. & Kirkby, M. J. Hydrol. Sci. Bull. 24(1), 43−69 (1979).
9. Leopold, L. B. & Miller, J. P. U.S. Geol. Surv. prof. Paper 282-A (1956).
10. Morisawa, M. EOS 38(1), 86−88 (1957).
11. Maxwell, J. C. Tech. Rep. 19, Off. Nav. Res. Proj. 389-042 (1960).
12. Mark, D. M. A. Ass. Am. Geogr. 73, 358−372 (1983).
13. Dietrich, W. E., Reneau, S. L. & Wilson, C. J. Proc. Int. Symp. Erosion Sedimentation Pacific Rim, publ. no. 165, 27−37 (Int. Ass. Hydrol. Sci., 1987).
14. Dietrich, W. E., Wilson, C. J. & Reneau, S. L. in Hillslope Processes (ed. Abrahams, A. D.) 361−388 (Allen & Unwin, Boston, 1986).
15. Horton, R. E. EOS 13, 350−361 (1932).
16. Kirkby, M. J. & Chorley, R. J. Bull. Int. Ass. Sci. Hydrol. 12, 5−21 (1967).
17. Dunne, T. & Black, R. D. Wat. Resour. Res. 6, 1296−1311 (1970).
18. Beaulieu, J. D. & Hughes, P. N. Bull. Oregon Dept. Geol. Min. Ind. 87 (1975).
19. Ruffner, T. A. Climates of the States (Gale Research Co., Detroit, 1985).
20. Calif. Div. Min. & Geol. Geologic Map of California Bakersfield Sheet (1964).
21. U.S. Geol, Surv. Topographical Instructions 1B4 (1952).
22. Wahrhaftig, C. in Franciscan Geology of Northern California (ed. Blake, M. C.) 31−50 (Soc. Econ. Paleontol. & Min., Los Angeles, 1984).
23. Rantz, S. E. U.S. Geol. Surv. HA 298 (1968).
24. Hack, J. T. U.S. Geol. Surv. Prof. Paper 294B (1957).
25. Kirkby, M. J. in Geomorphological Models (ed. Ahnert, F.) 1−14 (Cremlingen, FRG, 1987).
26. Iida, T. Trans. Jap. Geom. Un. 5, 1−12 (1984).
27. Reneau, S. L., Dietrich, W. E., Dorn, R. I., Berger, C. R. & Rubin, M. Geology 14, 655−658 (1986). | Article |

© 1988 Nature Publishing Group
Privacy Policy