Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Role of complexation processes in cadmium mobilization during estuarine mixing

Abstract

Complexation reactions with ligands in solutions1 and on solid surfaces2–4 are essential features of the biogeochemical cycling of trace metals such as cadmium5. Field studies6–8 and laboratory experiments8–11 show that cadmium can be mobilized from riverine participate matter when river water mixes with sea water. Although this mobilization is often attributed to the formation of cadmium chloro complexes in solution6,9,11, the role of these competitive complexation processes has not been quantified. Moreover, there is controversy concerning the reversibility of the interaction of cadmium with particulates11–13, which is an essential factor controlling the amount of cadmium that can be mobilized. Here we report the results of laboratory experiments and equilibrium calculations which demonstrate that cadmium partition between suspended particles and solution is completely reversible, and that complexation reactions in solution can completely account for the amount of cadmium released from suspended particles. Apparently, this toxic metal is not irreversibly fixed on particles, but can be released in response to changes in the aquatic environment. This may have important implications for the bioavailability of particle-bound cadmium.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Turner, D. R., Whitfield, M. & Dickson, A. G. Geochim. casmochim. Acta 45, 855–881 (1981).

    Article  ADS  CAS  Google Scholar 

  2. Farley, K. J., Dzombak, D. A. & Morel, F. M. M. J. Colloid Interface Sci. 106, 226–242 (1985).

    Article  ADS  CAS  Google Scholar 

  3. Davis, J. A., Fuller, C. C. & Cook, A. D. Geochim. cosmochim. Acta 51, 1477–1490 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Comans, R. N. J. & Middelburg, J. J. Geochim. cosmochim. Acta 51, 2587–2591 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Salomons, W. & Förstner, U. Metals in the Hydrocycle (Springer, Berlin, 1984).

    Book  Google Scholar 

  6. Elbaz-Poulichet, F., Huang, W. W., Martin, J. M. & Zhu, J. X. Mar. Chem. 22, 125–136 (1987).

    Article  CAS  Google Scholar 

  7. Salomons, W. & Kerdijk, H. N. in Cadmium in the Environment (eds Mislin, H. & Ravera, O.) 24–28 (Birkhäuser, Basel, 1986).

    Book  Google Scholar 

  8. Edmond, J. M. et al. Cont. Shelf Res. 4, 17–36 (1985).

    Article  ADS  Google Scholar 

  9. Van der Weijden, C. H., Arnoldus, M. J. H. L. & Meurs, C. J. Neth. J. Sea Res. 11, 130–145 (1977).

    Article  CAS  Google Scholar 

  10. Li, Y.-H., Burkhardt, L. & Teraoka, H. Geochim. cosmochim. Acta 48, 1879–1884 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Salomons, W. Envir. Technol. Lett. 1, 356–365 (1980).

    Article  CAS  Google Scholar 

  12. Nyffeler, U. P., Li, Y.-H. & Santschi, P. H. Geochim. cosmochim. Acta 48, 1513–1522 (1984).

    Article  ADS  CAS  Google Scholar 

  13. Comans, R. N. J. Water Res. 21, 1573–1576 (1987).

    Article  CAS  Google Scholar 

  14. Jannasch, H. W., Honeyman, B. D., Balistrieri, L. S. & Murray, J. W. Geochim. cosmochim. Acta 52, 567–577 (1988).

    Article  ADS  CAS  Google Scholar 

  15. Elbaz-Poulichet, F., Holliger, P., Huang, W. W. & Martin, J. M. Nature 308, 409–414 (1984).

    Article  ADS  CAS  Google Scholar 

  16. Di Toro, D. M. et al. Envir. Sci. Technol. 20, 55–61 (1986).

    Article  ADS  CAS  Google Scholar 

  17. De Baar, H. J. W., German, C. R., Elderfield, H. & van Gaans, P. F. M. Geochim. cosmochim. Acta 52, 1203–1219 (1988).

    Article  ADS  CAS  Google Scholar 

  18. Plummer, L. N., Jones, B. F. & Truesdell, A. H. U.S. geol. Surv. Water Res. Invest. 76–13 (1976).

  19. Sigg, L. in Aquatic Surface Chemistry (ed. Stumm, W.) 319–349 (Wiley, New York, 1987).

    Google Scholar 

  20. Morel, F. M. M. Principles of Aquatic Chemistry (Wiley, New York, 1983).

    Google Scholar 

  21. Stumm, W. & Morgan, J. J. Aquatic Chemistry (Wiley, New York, 1981).

    Google Scholar 

  22. Ball, J. W., Nordstrom, D. K. & Jenne, E. A. U.S. geol. Surv. Water Res. Invest. 78–116 (1980).

  23. Dickson, A. G. & Whitfield, M. Mar. Chem. 10, 559–565 (1981).

    Article  CAS  Google Scholar 

  24. Van der Weijden, C. H. & Middelburg, J. J. Water Res. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Comans, R., van Dijk, C. Role of complexation processes in cadmium mobilization during estuarine mixing. Nature 336, 151–154 (1988). https://doi.org/10.1038/336151a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/336151a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing