Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 17 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 335, 645 - 648 (13 October 1988); doi:10.1038/335645a0

Rings of negatively charged amino acids determine the acetylcholine receptor channel conductance

Keiji Imoto*, Christopher Busch*, Bert Sakmann*§, Masayoshi Mishina, Takashi Konno, Junichi Nakai, Hideaki Bujo, Yasuo Mori, Kazuhiko Fukuda & Shosaku Numa§

*Max-Planck-Institut für biophysikalische Chemie, D-3400 Göttingen, FRG
Departments of Medical Chemistry and Molecular Genetics, Kyoto University Faculty of Medicine, Kyoto 606, Japan
Present address: Departments of Medical Chemistry and Molecular Genetics, Kyoto University Faculty of Medicine, Kyoto 606, Japan.
§To whom correspondence should be addressed.

The structure–function relationship of the nicotinic acetylcholine receptor (AChR) has been effectively studied by the combination of complementary DNA manipulation and single-channel current analysis1–6. Previous work with chimaeras between the Torpedo californica and bovine AChR δ-subunits has shown that the region comprising the hydrophobic segment M2 and its vicinity contains an important determinant of the rate of ion transport through the AChR channel5. It has also been suggested that this region is responsible for the reduction in channel conductance caused by divalent cations5 and that segment M2 contributes to the binding site of noncompetitive antagonists7,8. To identify those amino acid residues that interact with permeating ions, we have introduced various point mutations into the Torpedo AChR subunit cDNAs to alter the net charge of the charged or glutamine residues around the proposed transmembrane segments9–15. The single-channel conductance properties of these AChR mutants expressed in Xenopus laevis oocytes indicate that three clusters of negatively charged and glutamine residues neighbouring segment M2 of the α-, β-, γ- and δ-subunits, probably forming three anionic rings, are major determinants of the rate of ion transport.

------------------

References

1. Mishina, M. et al. Nature 307, 604−608 (1984). | Article | PubMed | ISI | ChemPort |
2. Mishina, M. et al. Nature 313, 364−369 (1985). | Article | PubMed | ISI | ChemPort |
3. Sakmann, B. et al. Nature 318, 538−543 (1985). | Article | PubMed | ISI | ChemPort |
4. Mishina, M. et al. Nature 321, 406−411 (1986). | Article | PubMed | ISI | ChemPort |
5. Imoto, K. et al. Nature 324, 670−674 (1986). | Article | PubMed | ISI | ChemPort |
6. Tobimatsu, T. et al. FEBS Lett. 222, 56−62 (1987). | Article | PubMed | ChemPort |
7. Giraudat, J., Dennis, M., Heidmann, T., Chang, J.-Y. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 83, 2719−2723 (1986). | ChemPort |
8. Hucho, F., Oberthür, W. & Lottspeich, F. FEBS Lett. 205, 137−142 (1986). | Article | PubMed | ISI | ChemPort |
9. Noda, M. et al. Nature 299, 793−797 (1982). | Article | PubMed | ISI | ChemPort |
10. Noda, M. et al. Nature 301, 251−255 (1983). | Article | PubMed | ISI | ChemPort |
11. Noda, M. et al. Nature 302, 528−532 (1983). | Article | PubMed | ISI | ChemPort |
12. Claudio, T., Ballivet, M., Patrick, J. & Heinemann, S. Proc. natn. Acad. Sci. U.S.A. 80, 1111−1115 (1983). | ChemPort |
13. Devillers-Thiery, A., Giraudat, J., Bentaboulet, M. & Changeux, J.-P. Proc. natn. Acad. Sci. U.S.A. 80, 2067−2071 (1983). | ChemPort |
14. Guy, H. R. Biophys. J. 45, 249−261 (1984). | PubMed | ISI | ChemPort |
15. Finer-Moore, J. & Stroud, R. M. Proc. natn. Acad. Sci. U.S.A. 81, 155−159 (1984). | ChemPort |
16. Brisson, A. & Unwin, P. N. T. Nature 315, 474−477 (1985). | Article | PubMed | ISI | ChemPort |
17. Takai, T. et al. Nature 315, 761−764 (1985). | Article | PubMed | ISI | ChemPort |
18. Takai, T. et al. Eur. J. Biochem. 143, 109−115 (1984). | Article | PubMed | ISI | ChemPort |
19. Witzemann, V., Barg, B., Nishikawa, Y., Sakmann, B. & Numa, S. FEBS Lett. 223, 104−112 (1987). | Article | PubMed | ChemPort |
20. Shibahara, S. et al. Eur. J. Biochem. 146, 15−22 (1985). | Article | PubMed | ISI | ChemPort |
21. Yu, L., LaPolla, R. J. & Davidson, N. Nucleic Acids Res. 14, 3539−3555 (1986). | PubMed | ChemPort |
22. Boulter, J. et al. J. Neurosci. Res. 16, 37−49 (1986). | Article | PubMed | ChemPort |
23. Boulter, J. et al. Nature 319, 368−374 (1986). | Article | PubMed | ISI | ChemPort |
24. Schofield, P. R. et al. Nature 328, 221−227 (1987). | Article | PubMed | ISI | ChemPort |
25. Grenningloh, G. et al. Nature 328, 215−220 (1987). | Article | PubMed | ISI | ChemPort |
26. Kubo, T. et al. Eur. J. Biochem. 149, 5−13 (1985). | Article | PubMed | ISI | ChemPort |
27. Zoller, M. J. & Smith, M. Meth. Enzym. 100, 468−500 (1983). | Article | PubMed | ISI | ChemPort |
28. Nakamaye, K. L. & Eckstein, F. Nucleic Acids Res. 14, 9679−9698 (1986). | PubMed | ISI | ChemPort |
29. Melton, D. A. et al. Nucleic Acids Res. 12, 7035−7056 (1984). | PubMed | ISI | ChemPort |
30. Methfessel, C. et al. Pflügers Arch. ges. Physiol. 407, 577−588 (1986). | ChemPort |



© 1988 Nature Publishing Group
Privacy Policy