Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Direct use of high molecular weight polysaccharide by heterotrophic flagellates

Abstract

In aquatic ecology it is assumed that the heterotrophic (non-photosynthetic) protozoa that are abundant in marine and fresh water cannot compete with smaller-sized bacteria for labile dissolved substrates of low relative molecular mass (Mr), such as simple sugars and amino acids, at the low concentrations found in situ1,2 (typically 1–100 μg litre−1) because of surface to volume considerations. Consequently dissolved organic matter (DOM) is not considered to be a source of nutrition for heterotrophic protozoa, which are thought to be predominantly phagotrophic on bacteria and other small planktonic cells2. But there is no information as to whether protozoa might be able to use DOM of higher Mr. Here I report that heterotrophic flagellates in a salt marsh estuary and in a freshwater pond were able to ingest molecules of the polysaccharide dextran of Mr> 500,000 (500K). Mixed species cultures of estuarine and pond flagellates also showed enhanced growth in the presence of 2,000K, but not 40K, dextran. Compounds with high-Mr are often a large fraction of total DOM in natural waters3,4, and the concentrations (dry weight litre−1) of some types of labile high-Mr compounds in natural waters are equal to, or greater than, those of bacterioplankton5,6. Thus DOM of high Mr may be an alternative food resource for aquatic flagellates. Direct ingestion of high Mr compounds by heterotrophic flagellates would represent a more efficient pathway for returning a portion of DOM to aquatic food webs compared with the DOM-bacteria-flagellate-ciliate microbial loop7.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Haas, L. W. & Webb, K. L. J. exp. mar. Biol. Ecol. 39, 125–134 (1979).

    Article  Google Scholar 

  2. Fenchel, T. The Ecology of Protozoa (Science Tech. Madison, Wisconsin, 1987).

    Google Scholar 

  3. Wheeler, J. R. Limnol Oceanogr. 21, 846–852 (1976).

    Article  ADS  CAS  Google Scholar 

  4. Ogura, N. Mar. Chem. 5, 535–549 (1977).

    Article  CAS  Google Scholar 

  5. Burney, C. M., Johnson, K. M. & Sieburth, J. McN. Mar. Biol. 63, 175–187 (1981).

    Article  CAS  Google Scholar 

  6. DeFlaun, M. F., Paul, J. H. & Jeffrey, W. H. Mar. Ecol. Prog. Ser. 38, 65–73 (1987).

    Article  ADS  CAS  Google Scholar 

  7. Azam, F. et al. Mar. Ecol. Prog. Ser. 10, 257–263 (1983).

    Article  ADS  Google Scholar 

  8. Lee, J. J., Hutner, S. Y. & Bovee, E. C. (eds) An Illustrated Guide to the Protozoa (Allen, Lawrence, Kansas, 1985).

  9. Sleigh, M. A. The Biology of Protozoa (Arnold, London, 1979).

    Google Scholar 

  10. Rassmussen, L. & Orias, E. Science 190, 464–465 (1975).

    Article  ADS  Google Scholar 

  11. Glaser, D. Microb. Ecol. 15, 189–201 (1988).

    Article  CAS  Google Scholar 

  12. Lee, S. & Fuhrman, J. D. Appl. envir. Microbiol. 53, 1298–1303 (1987).

    CAS  Google Scholar 

  13. Vold, R. D. & Vold, M. J. in Encyclopedia of Chemistry (eds Clark, G. L. & Hawley, G. G.) 263–265 (Reinhold, New York, 1966).

    MATH  Google Scholar 

  14. Sherr, E. B., Sherr, B. F., Fallon, R. D. & Newell, S. Y. Limnol. Oceanogr. 31, 177–183 (1986).

    Article  ADS  Google Scholar 

  15. Smetacek, V. & Pollehne, F. Ophelia 26, 401–428 (1986).

    Article  Google Scholar 

  16. Ducklow, H. W., Purdie, D. A., Williams, P. J. leB & Davis, J. M. Science 232, 865–867 (1986).

    Article  ADS  CAS  Google Scholar 

  17. Roman, M. R. et al. Mar. Ecol. Prog. Ser. 42, 39–52 (1988).

    Article  ADS  Google Scholar 

  18. Sanders, R. W. & Porter, K. G. EOS 68, 1705 (1987).

    Google Scholar 

  19. Porter, K. G. & Feig, Y. S. Limnol. Oceanogr. 25, 943–948 (1980).

    Article  ADS  Google Scholar 

  20. Sherr, B. F., Sherr, E. B., Andrew, T. L., Fallon, R. D. & Newell, S. Y. Mar. Ecol. Prog. Ser. 32, 169–179 (1986).

    Article  ADS  CAS  Google Scholar 

  21. Hobble, J. E., Daley, R. J. & Jasper, S. Appl. envir. Microbiol. 33, 943–948 (1977).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sherr, E. Direct use of high molecular weight polysaccharide by heterotrophic flagellates. Nature 335, 348–351 (1988). https://doi.org/10.1038/335348a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/335348a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing