Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Why ion pair reversal by protein engineering is unlikely to succeed

Abstract

Genetic engineering is a powerful tool for exploring correlations between structure and function in proteins, but as yet we are unable to use it for effective protein design. One of the most interesting examples, which would seem to be obvious, is reversing the polarity of an ion pair. Changing a positively charged protein group, that provides a strong binding for negative substrates, to a negative group is expected to provide an effective binding site for a positively charged substrate. But several recent experiments on aspartate aminotransferase1,2, trypsin3 and aspartate transcarbamoylase (Schachman, H. K. personal communication) have indicated that polarity reversal is not so successful. Here we argue that the same factors that make the enzyme an effective system for the (−+) pair will make it a much less effective system for the ( +−)pair. We also point out that the unusually low effective dielectric constant (ɛ 13) for the (−+) interaction is due to its microenviron-ment and this will destabilize a (+−) arrangement having an entirely different dielectric constant (ɛ 80). The calculations presented here evaluate the energetics of ion pairs in protein active sites on a semiquantitative level. This is particularly important when dealing with strong, functionally important interactions that are difficult to evaluate with macroscopic models.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Cronin, C. N., Malcolm, B. A. & Kirsch, J. F. J. Am. chem. Soc. 109, 2222–2223 (1987).

    Article  CAS  Google Scholar 

  2. Cronin, C. N. & Kirsch, J. F. Biochemistry (manuscript submitted).

  3. Graf, L. et al. Biochemistry 26, 2616–2638 (1987).

    Article  CAS  Google Scholar 

  4. Warshel, A. Biochemistry 20, 3167–3177 (1981).

    Article  CAS  Google Scholar 

  5. Warshel, A., Sussman, F. & King, G. Biochemistry 25, 8368–8372 (1986).

    Article  CAS  Google Scholar 

  6. Warshel, A. & Sussman, F. Proc. natn. Acad. Sci. U.S.A 83, 3806–3810 (1986).

    Article  ADS  CAS  Google Scholar 

  7. Hwang, J-K & Warshel, A. Biochemistry 26, 2669–2673 (1987).

    Article  CAS  Google Scholar 

  8. Warshel, A. & Russell, S. T. Q. Rev. Biophys. 17, 283–422 (1984).

    Article  CAS  Google Scholar 

  9. Rao, S. N., Singh, U. C., Bash, P. A. & Kollman, P. A. Nature 328, 551–554 (1987).

    Article  ADS  CAS  Google Scholar 

  10. Mezei, M., Mehrotra, P. K. & Beveridge, D. L. J. Am. chem. Soc. 107, 2239–2245 (1985).

    Article  CAS  Google Scholar 

  11. Arnone, A. et. al. in Molecular Structure and Biological Activity (eds Griffen, J. F. & Duax, W. L.) 57–74 (Elsevier, New York, 1982).

    Google Scholar 

  12. Kirsch, J. F. et al. J. mol. Biol. 174, 497–525 (1984).

    Article  CAS  Google Scholar 

  13. Warshel, A., Russell, S. T. & Churg, A. K. Proc. natn. Acad. Sci. U.S.A. 81, 4785–4789 (1984).

    Article  ADS  CAS  Google Scholar 

  14. Warshel, A. Proc. natn Acad. Sci. U.S.A. 75, 5250–5254 (1978).

    Article  ADS  CAS  Google Scholar 

  15. Quiocho, F. A., Sack, J. S. & Vyas, N. K. Nature 329, 561–564 (1987).

    Article  ADS  CAS  Google Scholar 

  16. Wells, J. A., Powers, D. B., Bott, R. R., Craycar, T. P. & Estell, D. A. Proc. natn. Acad. Sci. U.S.A. 84, 1219–1223 (1989).

    Article  ADS  Google Scholar 

  17. Sternberg, M. J. E., Hayes, F. R. F., Russell, A. J., Thomas, P. G. & Fersht, A. R. Nature 305, 86–88 (1987).

    Article  ADS  Google Scholar 

  18. Russell, A. J. & Fersht, A. R. Nature 328, 496–500 (1987).

    Article  ADS  CAS  Google Scholar 

  19. Gilson, M. K. & Honig, B. H. Nature 330, 84–86 (1987).

    Article  ADS  CAS  Google Scholar 

  20. Warshel, A. Nature 330, 15–16 (1987).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hwang, JK., Warshel, A. Why ion pair reversal by protein engineering is unlikely to succeed. Nature 334, 270–272 (1988). https://doi.org/10.1038/334270a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334270a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing