Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

NMDA application potentiates synaptic transmission in the hippocampus

Abstract

The NMDA (N-methyl-D-aspartate) class of glutamate receptor plays a critical role in a variety of forms of synaptic plasticity in the vertebrate central nervous system1–5. One extensively studied example of plasticity is long-term potentiation (LTP), a remarkably long-lasting enhancement of synaptic efficiency induced in the hippocampus by brief, high-frequency stimulation of excitatory synapses. LTP is a strong candidate for a cellular mechanism of learning and memory. The site of LTP induction appears to be the postsynaptic cell and induction requires both activation of NMDA receptors by synaptically released glutamate6 and depolarization of the postsynaptic membrane7–9. It is proposed that this depolarization relieves a voltage-dependent Mg2+ block of the NMDA receptor channel, resulting in increased calcium influx10,11 which is the trigger for the induction of LTP1,12,13. This model predicts that application of a large depolarizing dose of NMDA should be sufficient to evoke LTP. In agreement with a previous study6, we have found that NMDA or glutamate application does potentiate synaptic transmission in the hippocampus. This agonist-induced potentiation is, however, decremental and short-lived, unlike LTP. It is occluded shortly after the induction of LTP and a similar short-term potentiation can be evoked by synaptically released glutamate. We thus propose that LTP has two components, a short-term, decremental component which can be mimicked by NMDA receptor activation, and a long-lasting, non-decremental component which, in addition to requiring activation of NMDA receptors, requires stimulation of presynaptic afferents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Collingridge, G. L. & Bliss, T. V. P. Trends Neurosci. 10, 288–293 (1987).

    Article  CAS  Google Scholar 

  2. Kleinschmidt, A., Bear, M. F. & Singer, W. Science 238, 355–358 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Cline, H. T., Debski, E. A. & Constantine-Paton, M. Proc. natn. Acad. Sci. U.S.A. 84, 4342–4345 (1987).

    Article  ADS  CAS  Google Scholar 

  4. Stelzer, A., Slater, N. T. & tenBruggencate, G. Nature 326, 698–701 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Mody, I. & Heinemann, U. Nature 326, 701–704 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  6. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol. Lond. 334, 33–46 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Gustafsson, B., Wigström, H., Abraham, W. C. & Huang, Y.-Y. J. Neurosci. 7, 774–780 (1987).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Malinow, R. & Miller, J. P. Nature 320, 529–530 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  9. Gustafsson, B. & Wigström, H. J. Neurosci. 6, 1575–1582 (1986).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Mayer, M. L., Westbrook, G. L. & Guthrie, P. B. Nature 309, 262–263 (1984).

    Article  ADS  Google Scholar 

  11. Nowak, L., Bregestovski, P., Ascher, P., Herbet, A. & Prochiantz, A. Nature 307, 462–465 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. Lynch, G., Larson, J., Kelso, S., Barrionuevo, G. & Schottler, F. Nature 305, 719–721 (1983).

    Article  ADS  CAS  PubMed  Google Scholar 

  13. Wigström, H. & Gustafsson, B. J. Physiol. Paris 81, 228–236 (1986).

    PubMed  Google Scholar 

  14. Collingridge, G. L., Kehl, S. J. & McLennan, H. J. Physiol., Lond. 334, 19–31 (1983).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Watkins, J. C. & Evans, R. H. A. Rev. Pharmac. Tox. 21, 165–204 (1981).

    Article  CAS  Google Scholar 

  16. Kauer, J. A., Malenka, R. C. & Nicoll, R. A. J. Physiol, Lond. 398, 23P (1988).

    Google Scholar 

  17. Malenka, R. C., Madison, D. V. & Nicoll, R. A. Nature 321, 175–177 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  18. Akers, R. E., Lovinger, D. M., Colley, P. A., Linden, D. J. & Routtenberg, A. Science 231, 587–489 (1986).

    Article  ADS  CAS  PubMed  Google Scholar 

  19. Malenka, R. C., Ayoub, G. S. & Nicoll, R. A. Brain Res. 403, 198–203 (1987).

    Article  CAS  PubMed  Google Scholar 

  20. Hu, G.-Y. et al. Nature 328, 426–429 (1987).

    Article  ADS  CAS  PubMed  Google Scholar 

  21. Lovinger, D., Wong, K., Murakami, K. & Routtenberg, A. Brain Res. 436, 177–183 (1987).

    Article  CAS  PubMed  Google Scholar 

  22. Malinow, R., Madison, D. V. & Tsien, R. W. Biophys. J. 53, 429a (1988).

    Google Scholar 

  23. Madison, D. V., Malinow, R. & Tsien, R. W. J. Physiol., Lond. 398, 18P (1988).

    Article  Google Scholar 

  24. Bliss, T. V. P. & Lynch, M. A. in Long-term Potentiation: Mechanisms and Key Issues (eds Landfield, P. W. & Deadwyler, S. A.) 3–72 (Liss, New York, 1988)

    Google Scholar 

  25. Hopkins, W. F. & Johnston, D. Science 226, 350–352 (1984).

    Article  ADS  CAS  PubMed  Google Scholar 

  26. Harris, E. W. & Cotman, C. W. Neurosci. Lett. 70, 132–137 (1986).

    Article  CAS  PubMed  Google Scholar 

  27. Kauer, J. A. & Nicoll, R. A. Exp. Brain Res. (suppl.) (in the press).

  28. Bear, M. F. & Singer, W. Nature 320, 172–175 (1985).

    Article  ADS  Google Scholar 

  29. Nicoll, R. A. & Alger, B. E. J. Neurosci. Meth. 4, 153–156 (1981).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kauer, J., Malenka, R. & Nicoll, R. NMDA application potentiates synaptic transmission in the hippocampus. Nature 334, 250–252 (1988). https://doi.org/10.1038/334250a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/334250a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing