Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Properties of high-density binary mixtures and the age of the Universe from white dwarf stars

Abstract

The luminosity of white dwarf stars can be attributed to the cooling process of their degenerate cores. The simple relationship existing between their luminosity and their age, together with the lack of white dwarfs fainter than log (L/L)≈−4.5, provides a method of measuring the age of the disk and consequently that of the Universe1,2. Winget et al.2 have derived an age of the galactic disk of 9.3 Gyr and have then found that the Universe is young: 10.3 Gyr. These values depend on the assumption that completely ionized carbon and oxygen (the most abundant elements in white dwarf interiors) are miscible in solid phase. It is possible, however, that completely ionized carbon and oxygen separate during the process of crystallization3,4. The consequences of this behaviour on the evolution of mass-accreting carbon–oxygen white dwarfs in stellar binary systems5–7 and on the cooling process of white dwarfs8,9 have been already described. Here, we attempt to show that a galactic disk'age of 15 Gyr cannot be excluded by the white dwarf observations if carbon anil oxygen are immiscible in solid phase.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Schmidt, M. Astrophys. J. 129, 243–258 (1959).

    Article  ADS  Google Scholar 

  2. Winget, D. E. et al. Astrophys. J. 315, L77–L81 (1987).

    Article  ADS  CAS  Google Scholar 

  3. Stevenson, D. J. J. Phys., Suppl. No. 3 41, C2/61-64 (1980).

  4. Barrat, J. L., Baus, M. & Hansen, J. P. Phys. Rev. Lett. 56, 1063–1065 (1986).

    Article  ADS  CAS  Google Scholar 

  5. Canal, R., Isern, J. & Labay, J. Astrophys. J. 241, L33–L36 (1980).

    Article  ADS  CAS  Google Scholar 

  6. Isern, J., Labay, J., Hernanz, M. & Canal, R. Aslrophys. J. 273, 320–329 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Hernanz, M., Isern, J., Canal, R., Labay, J. & Mochkovitch, R. Aslrophys. J. 324, 331–344 (1988).

    Article  ADS  CAS  Google Scholar 

  8. Mochkovitch, R. Astr. Aslrophys. 122, 212–218 (1983).

    ADS  CAS  Google Scholar 

  9. Garcia-Berro, E., Hernanz, M., Mochkovitch, R. & Isern, J. Astr. Astrophys. 193, 141–147 (1988).

    ADS  CAS  Google Scholar 

  10. Liebert, J. W. A. Rev. Astr. Astrophys. 18, 363–398 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Liebert, J. W., Dahn, C. C. & Sion, E. M. The Nearby Stars and the Stellar Luminosity Function, IAU Coll. 76 (eds Phillips, A. G. D. & Upgren, A. R.) 103–106 (Davis, Schenectady, 1983).

    Google Scholar 

  12. Mestel, L. Mon. Not. R. astr. Soc. 112, 583–597 (1952).

    Article  ADS  Google Scholar 

  13. Iben, I. I. & Tutukov, A. V. Aslrophys. J. 282, 615–630 (1980).

    Article  ADS  Google Scholar 

  14. Hansen, J. P., Torrie, G. M. & Vieillefosse, J. P. Phys. Rev. A16, 2153–2168 (1977).

    Article  ADS  Google Scholar 

  15. Ichimaru, S., Iyetomi, H. & Tanaka, S. Phys. Rep. 149, 191–205 (1987).

    Article  Google Scholar 

  16. Mayor, M. Astr. Astrophys. 32, 321–327 (1974).

    ADS  Google Scholar 

  17. Wyatt, S. P. & Cahn, J. H. Astrophys. J. 275, 225–239 (1983).

    Article  ADS  CAS  Google Scholar 

  18. Mazzitelli, J. & D'Antonna, F. Astrophys. J. 311, 762–773 (1986).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garcja-Berro, E., Hernanz, M., Isern, J. et al. Properties of high-density binary mixtures and the age of the Universe from white dwarf stars. Nature 333, 642–644 (1988). https://doi.org/10.1038/333642a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333642a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing