Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle

Abstract

Duchenne muscular dystrophy (DMD) and its milder form, Becker muscular dystrophy (BMD), are allelic X-linked muscle disorders in man1. The gene responsible for the disease has been cloned from knowledge of its map location at band Xp21 on the short arm of the X chromosome2–5. The product of the DMD gene, a protein of relative molecular mass 400,000 (Mr 400K) recently named dystrophin, has been reported to co-purify with triads of mouse and rabbit skeletal muscle when assayed using polyclonal antibodies raised against fusion proteins encoded by regions of mouse DMD complementary DNA6,7. Here we show that anti-bodies directed against synthetic peptides and fusion proteins derived from the N-terminal region of human DMD cDNA strongly react with an antigen present in skeletal muscle sar-colemma on cryostat sections of normal human muscle biopsies. This immunoreactivity is reduced or absent in muscle fibres from DMD patients but appears normal in muscle fibres from patients with other myopathic diseases. The same antibodies specifically react with a 400K protein in sodium dodecyl sulphate (SDS) extracts of normal human muscle subjected to Western blot analysis. We conclude that the product of the DMD gene is associated with the sarcolemma rather than with the triads and speculate that it strengthens the sarcolemma by anchoring elements of the internal cytoskeleton to the surface membrane.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Worton, R. G. & Burghes, A. H. M. Int. Rev. Neurol. 29, 1–75 (1988).

    Article  CAS  Google Scholar 

  2. Monaco, A. P. et al. Nature 323, 646–650 (1986).

    Article  ADS  CAS  Google Scholar 

  3. Koenig, M. et al. Cell 50, 503–517 (1987).

    Article  Google Scholar 

  4. Hoffman, E. P., Monaco, A. P., Feener, C. C. & Kunkel, L. M. Science 238, 347–350 (1987).

    Article  ADS  CAS  Google Scholar 

  5. Burghes, A. H. M. et al. Nature 328, 434–437 (1987).

    Article  ADS  CAS  Google Scholar 

  6. Hoffman, E. P., Brown, R. H. & Kunkel, L. M. Cell 51, 919–928 (1987).

    Article  CAS  Google Scholar 

  7. Hoffman, E. P., Knudson, C. M., Campbell, K. P. & Kunkel, L. M. Nature 330, 754–758 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Parker, J. M. R. & Hodges, R. S. J. Protein Chem. 3, 465–478 (1985).

    Article  Google Scholar 

  9. Hammonds, R. G. Cell 51 (1987).

  10. Lipman, D. J. & Pearson, W. R. Science 227, 1435–1441.

  11. Nilsson, B., Abrahamsen, L. & Uhlén, M. EMBO J. 4, 1075–1080 (1985).

    Article  CAS  Google Scholar 

  12. Spindler, K. R., Rossen, D. S. E. & Berk, A. J. J. Virol. 49, 132–141 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Engvall, E. & Perlmann, P. P. Immunochemistry 8, 871–879 (1971).

    Article  CAS  Google Scholar 

  14. Affinity Chromatography: Principles and Methods 8–15 (Pharmacia Fine Chemicals, Sweden, 1977).

  15. Wang, K., McClure, J. & Tu, A. Proc. natn Acad. Sci. U.S.A. 76, 3698–3702 (1979).

    Article  ADS  CAS  Google Scholar 

  16. Sugita, H. et al. Proc. Japan Acad. 63, 107–110 (1987).

    Article  CAS  Google Scholar 

  17. Karpati, G. et al. Ann. Neurol. 20, 38–49 (1986).

    Article  CAS  Google Scholar 

  18. Lev, M. A., Feener, C. C., Kunkel, L. M. & Brown, R. H. J. Biol. Chem. 262, 15817–15820 (1987).

    CAS  PubMed  Google Scholar 

  19. Hyser, C., Province, M. & Griggs, R. C. Ann. Neurol. 22, 553–555 (1987).

    Article  CAS  Google Scholar 

  20. Davison, M. D. & Critchley, D. R. Cell 52, 159–160 (1988).

    Article  CAS  Google Scholar 

  21. Ebashi, S., Ebashi, F. & Manuyama, K. Nature 203, 645–646 (1964).

    Article  ADS  CAS  Google Scholar 

  22. Lazarides, E. & Nelson, W. J. Cell 31, 505–508 (1982).

    Article  CAS  Google Scholar 

  23. Appleyard, S. T. et al. Proc. natn. Acad. Sci. U.S.A. 81, 776–780 (1984).

    Article  ADS  CAS  Google Scholar 

  24. Sugita, H. et al. Proc. Japan. Acad. 64, 37–39 (1–988).

  25. Mokri, B. & Engel, A. G. Neurology 25, 1111–1120 (1975).

    Article  CAS  Google Scholar 

  26. Carpenter, S. & Karpati, G. Brain 102, 147–161 (1979).

    Article  CAS  Google Scholar 

  27. Ruoslahti, E. & Pierschbacher, M. D. Science 238, 491–497 (1987).

    Article  ADS  CAS  Google Scholar 

  28. Karpati, G. & Carpenter, S. Am. J. med. Genet. 25, 653–658 (1986).

    Article  CAS  Google Scholar 

  29. Ray, P. N. et al. Nature 318, 671–675 (1985).

    Article  ADS  Google Scholar 

  30. Kunkel, L. M. et al. Proc. natn. Acad. Sci. U.S.A. 82, 4778–4782 (1985).

    Article  ADS  CAS  Google Scholar 

  31. Piszkiewicz, D., Landon, M. & Smith, E. L. Biochem. biophys. Res. Commun. 40, 1173–1178 (1970).

    Article  CAS  Google Scholar 

  32. Laemmli, U.K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  33. Towbin, H., Stachelin, T. & Gordon, J. Proc. natn. Acad. Sci. U.S.A. 76, 4350–4354 (1979).

    Article  ADS  CAS  Google Scholar 

  34. Nielsen, D. A. & Shapiro, D. J. Nucleic Acids Res. 14, 5936 (1986).

    Article  CAS  Google Scholar 

  35. Zubrzycka-Gaarn, E. E. et al. J. biol. Chem. 258, 4576–4581 (1983).

    CAS  PubMed  Google Scholar 

  36. Lowry, D. H. et al. J. biol. Chem. 193, 265–275 (1951).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zubrzycka-Gaarn, E., Bulman, D., Karpati, G. et al. The Duchenne muscular dystrophy gene product is localized in sarcolemma of human skeletal muscle. Nature 333, 466–469 (1988). https://doi.org/10.1038/333466a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/333466a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing