Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Human gene expression first occurs between the four- and eight-cell stages of preimplantation development

Abstract

The earliest stages of development in most animals, including the few mammalian species that have been investigated, are regulated by maternally inherited information1. Dependence on expression of the embryonic genome cannot be detected until the mid two-cell stage in the mouse2–4, the four-cell stage in the pig (J. Osborn & C. Polge, personal communication), and the eight-cell stage in the sheep5. Information about the timing of activation of the embryonic genome in the human is of relevance not only to the therapeutic practice of in vitro fertilization and embryo transfer (IVF), but more importantly for the successful development of techniques for the preimplantation diagnosis of certain inherited genetic diseases6–8. We describe here changes in the pattern of polypeptides synthesized during the pre-implantation stages of human development, and demonstrate that some of the major qualitative changes which occur between the four- and eight-cell stages are dependent on transcription. In addition, it appears that cleavage is not sensitive to transcriptional inhibition until after the four-cell stage.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Davidson, E. H. Gene Activity in Early Development (Academic, New York, 1986).

    Google Scholar 

  2. Braude, P., Pelham, H., Flach, G. & Lobatto, R. Nature 282, 102–105 (1979).

    Article  ADS  CAS  PubMed  Google Scholar 

  3. Flach, G., Johnson, M. H., Braude, P. R., Taylor, R. A. S. & Bolton, V. N. EMBO J. 1, 681–686 (1982).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Bolton, V. N., Oades, P. J. & Johnson, M. H. J. Embryol. exp. Morph. 79, 139–163 (1984).

    CAS  PubMed  Google Scholar 

  5. Crosby, I. M., Gandolfi, F. & Moor, R. M. J. Reprod. Fert. 82, 769–775 (1988).

    Article  CAS  Google Scholar 

  6. Monk, M., Handyside, A., Hardy, K. & Whittingham, D. Lancet No. 8556, 423–425 (1987).

  7. McLaren, A., Prenatal Diag. 5, 85–90 (1985).

    Article  CAS  PubMed  Google Scholar 

  8. Whittingham, D. & Penketh, R. Human Reprod. 2, 267–269 (1987).

    Article  CAS  Google Scholar 

  9. The First and Second Reports of the Voluntary Licensing Authority for Human Fertilisation and Embryology 1985 & 1986 (Medical Research Council, London).

  10. Gifford, D. J., Fleetham, J. A., Mahadevan, M. M., Taylor, P. J. & Schultz, G. A. Gamete Res. 18, 97–107 (1987).

    Article  CAS  PubMed  Google Scholar 

  11. Van Blerkom, J. & Brockway, G. O. Devl Biol. 44, 148–157 (1975).

    Article  CAS  Google Scholar 

  12. Tesarik, J., Kopecny, V., Plachot, M. & Mandelbaum, J. J. Reprod. Feft. 78, 1–8 (1986).

    Article  Google Scholar 

  13. Tesarik, J., Kopecny, V., Plachot, M., Mandelbaum, J., Da Lage, C. & Flechon, J. E. Devl Biol. 115, 193–203 (1986).

    Article  CAS  Google Scholar 

  14. Braude, P. R. Bolton, V. N. & Johnson, M. H. in Embryo Research—Yes or No. Ciba Foundation Symp. (eds G. Bock & M. O'Connor), 61–82 (Tavistock, London, 1986).

    Google Scholar 

  15. Goddard, M. J. & Pratt, H. P. M. J. Embryol. exp. Morph. 73, 111–133 (1983).

    CAS  PubMed  Google Scholar 

  16. Hunter, R. H. F. Anat. Rec. 178, 169–186 (1974).

    Article  CAS  PubMed  Google Scholar 

  17. Braude, P. R., Johnson, M. H., Bolton, V. N. & Pratt, H. P. M. in In vitro Fertilization and Embryo Transfer (eds P. G. Crosignani & B. L. Rubin) Serono Clinical Colloquia on Reproduction 4, 211–228 (Academic, New York, 1983).

    Google Scholar 

  18. Braude, P. R. et al. Fert. Steril. 42, 34–38 (1984).

    Article  CAS  Google Scholar 

  19. Sher, G., et al. Fert. Steril. 41, 511–518 (1984).

    Article  CAS  Google Scholar 

  20. Braude, P. R. in Mammalian Development, a Practical Approach (ed. Monk, M.) 281–309 (IRL, Oxford, 1987).

    Google Scholar 

  21. Laemmli, U. K. Nature 227, 680–685 (1970).

    Article  ADS  CAS  Google Scholar 

  22. Van Blerkom, J. in Methods in Mammalian Reproduction (ed. Daniels, J.) 677, (Academic, New York, 1978).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Braude, P., Bolton, V. & Moore, S. Human gene expression first occurs between the four- and eight-cell stages of preimplantation development. Nature 332, 459–461 (1988). https://doi.org/10.1038/332459a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332459a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing