Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Ionic recognition and selective response in self-assembling monolayer membranes on electrodes

Abstract

Communication in living organisms is governed by cell bilayer membranes, which selectively recognize a specific component in the presence of others and accordingly respond. The functioning of such molecular-size barriers involves molecular and quantum processes deriving from a precise, purpose-oriented architecture, and attempts have been made to create artificial supramolecular structures exhibiting similar properties1–9. In particular, chemically modified electrodes, coated with various types of organic layers10–18, have been used to control the access of electroactive species from solution, but such systems have so far lacked some of the important features of real, molecular-size membranes. Here we present the first example of an electrode coated with a stable, ion-selective artificial membrane having the thickness of just one molecule, which successfully mimics basic structural and functional principles of the natural bilayer membrane. This monolayer membrane, produced by molecular self-assembly on gold, can recognize a selected metal ion in the presence of other ions, and thus induces a specific electrode response. It consists of synthetic 'receptor sites', designed to impart the desired selectivity, embedded within an inert monolayer matrix which blocks vacant sites on the surface and so prevents the passage of undesired species. The supporting gold electrode permits electrochemical analysis of the membrane structure and performance. Such monolayer membranes may aid the study of elementary charge transfer processes at liquid–solid interfaces, and contribute to future molecular-based technologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Kuhn, H. J. Photochem. 10, 111–132 (1979).

    Article  CAS  Google Scholar 

  2. Polymeropoulos, E. E., Möbius, D. & Kuhn, H. Thin Solid Films 68, 173–190 (1980).

    Article  ADS  CAS  Google Scholar 

  3. Fromherz, P. & Arden, W. J. Am. chem. Soc. 102, 6211–6218 (1980).

    Article  CAS  Google Scholar 

  4. Lehn, J.-M. Science 227, 849–856 (1985).

    Article  ADS  CAS  PubMed  Google Scholar 

  5. Arrhenius, Th. S., Blanchard-Desce, M., Dvolaitzky, M., Lehn, J.-M. & Malthete, J. Proc. natn. Acad. Sci. USA 83, 5355–5359 (1986).

    Article  ADS  CAS  Google Scholar 

  6. Kumano, A., Niwa, O., Kajiyama, T., Takayanagi, M. & Kunitake, T. Polymer J. 16, 461–470 (1984).

    Article  CAS  Google Scholar 

  7. Ringsdorf, H., Schmidt, G. & Schneider, J. Thin Solid Films 152, 207–222 (1987).

    Article  ADS  CAS  Google Scholar 

  8. Proc. 2nd Int. Conf. on Langmuir-Blodgett Films, Schenectady, 1985 Thin Solid Films 132, 1–249 (1985).

  9. Fendler, J. H. J. Membrane Sci. 30, 323–346 (1987).

    Article  CAS  Google Scholar 

  10. Murray, R. W. in Electroanalytical Chemistry Vol. 13 (ed. Bard, A. J.) 191–368 (Dekker, New York, 1984).

    Google Scholar 

  11. Eaves, J. G., Munro, H. S. & Parker, D. Inorg. Chem. 26, 644–650 (1987).

    Article  CAS  Google Scholar 

  12. Takeuki, E. S. & Osteryoung, J. Analyt. Chem. 57, 1770–1771 (1985).

    Article  Google Scholar 

  13. Kimura, K., Kumami, K., Kitazawa, S. & Shono, T. Analyt. Chem. 56, 2369–2372 (1984).

    Article  CAS  Google Scholar 

  14. Fujihira, M. in Topics in Organic Electrochemistry (ed. Fry, A. J. & Britton, W. E.) 255–294 (Plenum, New York, 1986).

    Book  Google Scholar 

  15. Facci, J. S. Langmuir 3, 525–530 (1987).

    Article  CAS  Google Scholar 

  16. Okahata, Y., Enna, G., Taguchi, K. & Seki, T. J. Am chem. Soc. 107, 5300–5301 (1985).

    Article  CAS  Google Scholar 

  17. Martin, C. R., Rubinstein, I. & Bard, A. J. J. Am. chem. Soc. 104, 4817–4824 (1982).

    Article  CAS  Google Scholar 

  18. Rubinstein, I. & Rubinstein, I. J. phys. Chem. 91, 235–241 (1987).

    Article  CAS  Google Scholar 

  19. Sabatani, E., Rubinstein, I., Maoz, R. & Sagiv, J. J. electroanalyt. Chem. 219, 365–371 (1987).

    Article  CAS  Google Scholar 

  20. Finklea, H. O., Avery, S., Lynch, M. & Furtsch, T. Langmuir 3, 409–413 (1987).

    Article  CAS  Google Scholar 

  21. Sabatani, E. & Rubinstein, I. J. phys. Chem. 91, 6663–6669 (1987).

    Article  CAS  Google Scholar 

  22. Maoz, R. & Sagiv, J. J. Colloid Interface Sci. 100, 465–496 (1984).

    Article  ADS  CAS  Google Scholar 

  23. Nuzzo, R. G., Fusco, F. A. & Allara, D. L. J. Am. chem. Soc. 109, 2358–2368 (1987).

    Article  CAS  Google Scholar 

  24. Diem, T., Czajka, B., Weber, B. & Regen, S. L. J. Am. chem. Soc. 108, 6095–6096 (1986).

    Article  Google Scholar 

  25. Sagiv, J. Israel J. Chem. 18, 346–353 (1979).

    Article  CAS  Google Scholar 

  26. Holmes-Farley, S. R., Reamey, R. H., McCarthy, Th. J., Deutch, J. & Whitesides, G. M. Langmuir 1, 725–740 (1985).

    Article  CAS  Google Scholar 

  27. Kolb, D. M. in Advances in Electrochemistry and Electrochemical Engineering Vol. 11 (ed. Gerischer, H. & Tobias, C. W.) 155 (Wiley, New York, 1978).

    Google Scholar 

  28. Babai, M., Gottesfeld, S. & Gileadi, E. Israel J. Chem. 18, 110–117 (1979).

    Article  CAS  Google Scholar 

  29. Wilson, S. R. & Price, M. F. J. org. Chem. 49, 722–725 (1984).

    Article  CAS  Google Scholar 

  30. Bellamy, L. J. The Infra-red Spectra of Complex Molecules (Wiley, New York, 1975).

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rubinstein, I., Steinberg, S., Tor, Y. et al. Ionic recognition and selective response in self-assembling monolayer membranes on electrodes. Nature 332, 426–429 (1988). https://doi.org/10.1038/332426a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332426a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing