Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Rhodium distribution at the Cretaceous/Tertiary boundary analysed by ultrasensitive laser photoionization

Abstract

The extraordinarily high concentrations of indium and other siderophiles found in Cretaceous/Tertiary (K/T) boundary deposits have been interpreted1 as a result of a large extraterrestrial body falling upon the Earth, causing mass extinction of the biota dominant in the Cretaceous. The existing alternative models of the Cretaceous terminal event try to explain the anomaly of siderophile elements by their being concentrated through sedimentation or volcanic eruptions2,3. To understand the nature of the K/T event, it is important to establish the proportions of siderophiles and their isotopes in boundary deposits of that age, especially the proportions of platinum-group elements, their concentrations in extraterrestrial material being high and occurring in ratios differing from those typical of terrestrial material. Here we present the first data on rhodium concentrations at the K/T boundary in the Sumbar-SM-4 section (Turkmen SSR) obtained by the ultrasensitive laser photoionization spectroscopy (LAPIS) technique4,5. The maximum Rh concentration in the samples studied is 24.2 ng g−1The Rh/Ir ratio is 0.34±0.06, which is close to the cosmic ratio of these elements. The LAPIS technique is efficient and can be used for determining the concentrations of all siderophile elements and their isotopes in geological materials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Alvarez, L. W., Alvarez, W., Asaro, F. & Michel, H. V. Science 208, 1095–1108 (1980).

    Article  ADS  CAS  Google Scholar 

  2. Zoller, W. H., Parrington, J. R. & Kotra, J. M. P. Science 222, 1118–1120 (1983).

    Article  ADS  CAS  Google Scholar 

  3. Officer, C. B. & Drake, C. L. Science 219, 1383–1390 (1982).

    Article  ADS  Google Scholar 

  4. Bekov, G. I. & Letokhov, V. S. in Laser Analytical Spectrochemistry (ed. Letokhov, V. S.) 98–151 (Adam Hilger, Bristol, 1986).

    Google Scholar 

  5. Letokhov, V. S. Laser Photoionization Spectroscopy (Academic, New York, 1987).

    Google Scholar 

  6. Ganapathy, R. Science 209, 921–923 (1980).

    Article  ADS  CAS  Google Scholar 

  7. Kyte, F. T., Zhou, Z. & Wasson, J. T. Nature 283, 651–656 (1980).

    Article  ADS  Google Scholar 

  8. Nazarov, M. A., Alekseev, A. S. & Amanniyazov, K. N. Lunar planet. Sci. 17, 605–606 (1986).

    ADS  Google Scholar 

  9. Hsü, K. S. Nature 285, 201–203 (1980).

    Article  ADS  Google Scholar 

  10. Bohor, B. F., Foord, E. E., Modreski, P. I. & Triplehorn, D. M. Science 224, 867–869 (1984).

    Article  ADS  CAS  Google Scholar 

  11. Badjukov, D. D., Nazarov, M. A. & Suponeva, I. V. Lunar planet. Sci. 17, 18–19 (1986).

    ADS  Google Scholar 

  12. Alvarez, W., Alvarez, L. W., Asaro, F. & Michel, H. V. Spec. Pap. geol. Soc. Am. 190, 305–315 (1982).

    Google Scholar 

  13. Kyte, F. T., Smit, J. & Wasson, J. T. Earth planet. Sci. Lett. 73, 183–195 (1985).

    Article  ADS  CAS  Google Scholar 

  14. Lichte, F. E. et al. Nature 322, 816–817 (1986).

    Article  ADS  CAS  Google Scholar 

  15. Alekseev, A. S., Barsukova, L. D., Kolesov, G. M., Nazarov, M. A. & Ammaniyazov K. N. Lunar planet. Sci. 17, 9–10 (1986).

    ADS  Google Scholar 

  16. Petrukhin, O. M., Malofeeva, G. I., Nefedov, V. I. & Salyn, J. V. Zh. analyt. Khim. 38, 250–255 (1983).

    CAS  Google Scholar 

  17. Bekov, G. I., Letokhov, V. S. & Radaev, V. N. J. opt. Soc. Am. B 2, 1554–1560 (1985).

    Article  ADS  CAS  Google Scholar 

  18. Sen Gupta, J. G. Analytica chim. Acta 42, 481–488 (1968).

    Article  CAS  Google Scholar 

  19. Sen Gupta, J. G. Chem. Geol. 3, 293–305 (1968).

    Article  ADS  CAS  Google Scholar 

  20. Anders, E. & Ebihara, M. Geochim. cosmochim. Acta 46, 2363–2380 (1982).

    Article  ADS  CAS  Google Scholar 

  21. Wasson, J. T. Meteorites: Their Record of Early Solar-System History (Freeman, New York, 1985).

    Google Scholar 

  22. Kaminskii, F. V., Frantsesson, E. V. & Khvostova, V. P. Dokl. Akad. Nauk SSSR 219, 204–207 (1974).

    CAS  Google Scholar 

  23. Hiemstra, S. A. Econ. Geol. 80, 944–957 (1985).

    Article  CAS  Google Scholar 

  24. Cowden, A., Donaldson, M. J., Naldrett, A. J. & Campbell, I. H. Can. Miner. 23, 300 (1985).

    Google Scholar 

  25. Naldrett, A. J. & Duke, J. M. Science 208, 1417–1424 (1980).

    Article  ADS  CAS  Google Scholar 

  26. Cousins, C. A. Trans. geol. Soc. S. Afr. 76, 77–81 (1973).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bekov, G., Letokhov, V., Radaev, V. et al. Rhodium distribution at the Cretaceous/Tertiary boundary analysed by ultrasensitive laser photoionization. Nature 332, 146–148 (1988). https://doi.org/10.1038/332146a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/332146a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing