Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Wednesday 23 August 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 332, 63 - 65 (03 March 1988); doi:10.1038/332063a0

Mass extinctions, atmospheric sulphur and climatic warming at the K/T boundary

Michael R. Rampino* & Tyler Volk*

*Department of Applied Science, New York University, New York, New York 10003, USA
NASA, Goddard Space Flight Center, Institute for Space Studies, New York, New York 10025, USA

A connection has recently been proposed between cloud albedo over the oceans and the release of dimethyl sulphide (DMS) by marine algae. DMS acts as a precursor for most of the cloud condensation nuclei (CCN) in the marine atmosphere1. The mass extinctions at the Cretaceous/Tertiary (K/T) boundary include about 90% of marine calcareous nannoplankton2,3, and carbon isotope data show that marine primary productivity as a whole was drastically reduced for at least several tens of thousands of years, and perhaps up to a million years after the extinction event4–6. The elimination of most marine calcareous phytoplankton would have meant a severe decrease in DMS production, leading to a drastic reduction in CCN and hence marine cloud albedo. Here we examine the possible climatic effects of a drastic decrease in CCN associated with a severe reduction in the global marine phytoplankton abundance. Calculations suggest that a reduction in CCN of more than 80%, and the resulting decrease in marine cloud albedo, could have produced a rapid global warming of 6°C or more. Oxygen isotope analyses of marine sediments from many parts of the world have been interpreted as indicating a marked warming coincident with the demise of calcareous nannoplankton at the K/T boundary. Decreased marine cloud albedo, and resulting high sea surface temperatures could have been a factor in the maintenance of low productivity in the 'Strangelove Ocean' period following the K/T extinctions.

------------------

References

1. Charlson, R. J., Lovelock, J. E., Andreae, M. O. & Warren, S. G. Nature 326, 655−661 (1987). | Article | ISI | ChemPort |
2. Thierstein, H. R. Spec. Publ. Soc. Econ. Miner. Petrol. 32, 355−394 (1981).
3. Thierstein, H. R. Spec. Pap. geol Soc. Am. 190, 385−399 (1982).
4. Hsü, K. J. et al. Science 216, 249−256 (1982). | ISI | ChemPort |
5. Hsü, K. J., McKenzie, J. A. & He, Q. X. Spec. Pap. geol Soc. Am. 190, 317−328 (1982). | ISI |
6. Arthur, M. A., Zachos, J. C. & Jones, D. S. Cret. Res. 8, 43−54 (1987). | Article |
7. Bates, T. S., Charlson, R. J. & Gammon, R. H. Nature 329, 319−321 (1987). | Article | ISI | ChemPort |
8. Wetherald, R. T. & Manabe, S. J. atmos. Sci 37, 1485−1510 (1980). | Article |
9. Wetherald, R. T. & Manabe S. J. atmos. Sci. 32, 2044−2059 (1975). | Article | ISI |
10. Hansen, J. E. et al. in Climate Processes and Climate Sensitivity (eds Hansen, J. E. & Takahashi, T.) 130−163 (Am. Geophys. Union, Washington, DC, 1984).
11. Barron, E. J. & Washington, W. M. in The Carbon Cycle and Atmospheric CO2: Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 546−553 (Am. Geophys. Union, Washington, DC, 1985).
12. Brennecke, J. L. & Anderson, T. P. Am. geophys. Union Trans. 58, 415 (1977).
13. Thierstein, H. R. & Berger, W. H. Nature 276, 461−466 (1978). | Article | ISI | ChemPort |
14. Scholle, P. A. & Arthur, M. A. Am. Ass. Petrol. Geol. Bull. 64, 67−87 (1980). | ChemPort |
15. Perch-Nielsen, K., McKenzie, J. & He, Q. X. Spec. Pap. geol. Soc. Am. 190, 353−371 (1982). | ChemPort |
16. Hsü, K. J. & McKenzie, J. A. in The Carbon Cycle and Atmospheric CO2. Natural Variations Archean to Present (eds Sundquist, E. T. & Broecker, W. S.) 487−492 (Am. Geophys. Union, Washington, DC, 1985).
17. Hsü, K. J. in Mesozoic and Cenozoic Oceans (ed. Hsu, K. J.) 75−84 (Am. Geophys. Union, Washington, DC, 1986).
18. Zachos, J. C. & Arthur, M. A. Paleoceanogr. 1, 5−26 (1986).
19. Andreae, M. O. in The Role of Air-Sea Exchange in Geochemical Cycling (ed. Buat-Ménard, P.) 331−362 (Reidel, Dordrecht, 1986). | ChemPort |
20. Boersma, A. et al. Init. Rep. DSDP 43, 695−718 (1979). | ChemPort |
21. Smit, J. Spec. Pap. geol Soc Am. 190, 329−352 (1982).
22. Margolis, S. V. et al. Paleoceanogr. 2, 361−377 (1987).
23. Boersma, A. & Shackleton, N. J. Init. Rep. DSDP 62, 513−526 (1981). | ChemPort |
24. Zachos, J. C. et al. Init. Rep. DSDP 86, 513−532 (1985). | ChemPort |
25. Hoffert, M. I. et al. J. atmos. Sci 40, 1659−1668 (1983). | Article |
26. McLean, D. M. Science 201, 401−406 (1978). | ISI | ChemPort |
27. McLean, D. M. Cret. Res. 6, 235−259 (1985). | Article | ChemPort |
28. Emiliani, C., Kraus, E. B. & Shoemaker, E. M. Earth planet. Sci. Lett. 55, 317−334 (1981). | Article | ISI |
29. Kasting, J. F., Richardson, S. M., Pollack, J. B. & Toon, O. B. Am. J. Sci. 286, 361−389 (1986). | PubMed | ChemPort |
30. Glancy, T. J. Jr, Barron, E. J. & Arthur, M. A. Paleoceanogr. 1, 523−537 (1986).
31. Alvarez, W. Eos 67, 649−658 (1986).
32. Courtillot, V. et al. Earth planet Sci. Lett. 80, 361−374 (1986). | Article | ChemPort |
33. Rampino, M. R. Nature 327, 468 (1987). | Article | ISI |
34. Hsü, K. J. et al. Nature 316, 809−811 (1985). | Article | ISI |
35. Margaritz, M. et al. Nature 320, 258−259 (1986). | Article | ISI | ChemPort |
36. Tucker, M. E. Nature 319, 48−50 (1986). | Article | ISI |
37. Aharon, P., Schidlowski, M. & Singh, I. B. Nature 327, 699−702 (1987). | Article | ChemPort |
38. Sun, Yijin et al. in Contr. 27th Int. Geol. Congr. 225−234 (Science Press, Beijing, 1984).
39. Dao-Yi, X. et al. Nature 321, 854−855 (1986). | Article |
40. Awramik, S. M. Nature 319, 696 (1986). | Article | ChemPort |
41. Morris, S. C. & Bengtson, S. Nature 319, 696−697 (1986). | Article | ChemPort |



© 1988 Nature Publishing Group
Privacy Policy