Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Static compression of H2O-ice to 128 GPa (1.28 Mbar)

Abstract

The high-pressure behaviour of H2O is of fundamental importance in both condensed matter and planetary physics1,2. The hydrogen bonding in this system gives rise to a variety of phases at low pressures and temperatures (that is, <2 GPa and <300 K), including the recently discovered high-density amorphous phases3. Structural and equation-of-state4,5 and spectroscopic6–8 studies have been carried out in the 30–50 GPa range on the dense ices (ice VII and VIII), but no data are available on the properties of solid H2O in the megabar pressure range (>100 GPa) where a variety of stable phases, including the metallic form, have been proposed9. Information on the properties of H2O at these pressures has been limited to the results of shock-wave experiments, which probe the fluid phase at high pressures and temperatures10, and to theoretical statistical electron calculations11–15. In this study we have compressed ice in a diamond-anvil cell to 128 GPa and measured the molar volume as a function of pressure by synchrotron X-ray diffraction techniques. The diffraction data are consistent with the body-centred cubic (b.c.c.) oxygen sublattice of ice VII persisting to the highest pressures of our measurements. The measured equation of state indicates that ice is less compressible at very high pressures than is suggested by recent experiments in the 30–50 GPa range, but more compressible than statistical electron and recent pair-potential models predict.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. 1. Hobbs, P. V. Ice Physics (Clarendon, Oxford, 1974). 2. Hubbard, W. B. Planetary Interiors (Van Nostrand Reinhold, New York, 1984). 3. Mishima, O., Calvert, L. D. & Whalley, E. Nature 310, 393-395 (1984). 4. Munro, R. G., Block, S., Mauer, F. A. & Piermarini, G. J. appl. Phys. 53, 6174-6178 (1982). 5. Liu, L.-g. Earth planet. Sci. Lett. 61, 359-364 (1982). 6. Walrafen, G. E. et al J. chem. Phys. 77, 2166-2174 (1982). 7. Polian, A. & Grimsditch, M. Phys. Rev. Lett. 52, 1312-1314 (1984). 8. Hirsch, K. R. & Holzapfel, W. B. / chem. Phys. 84, 2771-2775 (1986). 9. Polian, A., Besson, J. M. & Grimsditch, M. in Solid State Physics under Pressure (ed. Minomura, S.) 93-98 (Terra Scientific, Tokyo, 1985). 10. Mitchell, A. C. & Nellis, W. J. J. chem. Phys. 76, 6273-6281 (1982). 11. Saltpeter, E. E. & Zapolsky, H. S. Phys. Rev. 158, 876-886 (1967). 12. Ree, F. Report UCRL-52190, Lawrence Livermore Lab., Livermore, California (1976). 13. Reynolds, R. T. & Summers, A. L. /. geophys. Res. 70, 199-208 (1965). 14. Zharkov, V. N & Trubitsyn, V. P. Physics of Planetary Interiors, (Pachart, Tucson, Arizona, 1978). 15. Hubbard, W. B. & MacFarlane, J. J. /. geophys. Res. 85, 225-234 (1980). 16. Baublitz, M. A., Arnold, V. & Ruoff, A. L. Rev. scient. Instrum. 52, 1616-1624 (1981). 17. Jephcoat, A. P. et al. Eos 67, 1216 (1986). 18. Zha, C. S. et al Eos 67, 1216 (1986). 19. Mao, H. K. et al. Bull. Am. phys. Soc. 32, 798 (1987). 20. Mao, H. K., Bell, P. M., Shaner, J. W. & Steinberg, D. J. /. appl. Phys. 49, 3276-3283 (1978). 21. Bell, P. M., Xu, J. & Mao, H. K. in Shock Waves in Condensed Matter (ed. Gupta, S.) 125-130 (Plenum, New York, 1986). 22. Jephcoat, A. P., Mao, H. K. & Bell, P. M. in Hydrothermal Experimental Techniques (eds Ulmer G. C. & Barnes, H. L.) Ch. 19 (Wiley, New York, 1987). 23. Jeanloz, R. Geophys. Res. Lett. 8, 1219-1222 (1981). 24. Grimsditch, M., Rahman, A. & Polian, A. in Materials Res. Soc. Symp. Vol. 22 (eds Homan, C., MacCrone, R. K. & Whalley, E.) 143-146 (Elsevier, New York, 1984). 25. Liu, L.-g. & Bassett, W. A. Elements, Oxides, Silicates - High-Pressure Phases with Implications for the Earth's Interior, 92-94 (Oxford University Press, New York, 1986). 26. Mao, H. K., Bell, P. M. & Hemley, R. J. Phys. Rev. Lett. 55, 99-102 (1985). 27. Desgreniers, S., Vohra, Y. & Ruoff, A. L. Bull. Am. phys. Soc. 32, 762-763 (1987).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemley, R., Jephcoat, A., Mao, H. et al. Static compression of H2O-ice to 128 GPa (1.28 Mbar) . Nature 330, 737–740 (1987). https://doi.org/10.1038/330737a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/330737a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing