Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles

Abstract

Vacuoles, the storage organelles of plants, can constitute up to 90% of the cell volume. Transport of solutes such as sugars and organic and inorganic ions across the vacuolar membrane constitutes one of the major cellular achievements during diurnal and annual cycles of carbon metabolism. Recent investigations by patch-clamp techniques1 identified ion channels and pumps as pathways for the movement of ions and metabolites2–4. The mechanisms by which these transport proteins are regulated remain unknown. Changes in the cytoplasmic concentration of Ca2+ have been postulated to be involved in the physiology of various ion transport processes in plant cells5–9. But in contrast to animal cells10, to date no direct evidence exists for the modulation of ion-transport proteins by Ca2+ in plant cells. Here we report that in plant vacuoles, changes in cytoplasmic Ca2+ regulate the activation of two distinct types of voltage-dependent ion channels. A 60–80 pS channel appeared at Ca2+ levels above 10−7 M, activating slowly (SV—slow vacuolar type) upon application of hyperpolarizing voltage pulses. The voltage-threshold of appearance changed with the cytoplasmic Ca2+ concentration. At low Ca2+ a smaller channel (30–40 pS) activated instantaneously (FV—fast vacuolar type) upon application of both depolarizing and hyperpolarizing voltages. The two channel types modulated by physiological changes of cytoplasmic Ca2+ provide for versatile regulation of ion and metabolite fluxes between the cytoplasm and the vacuole.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hamill, O. P., Marty, A., Neher, E., Sakmann, B. & Sigworth, F. J. Pflügers Arch. ges. Physiol. 391, 85–100 (1981).

    Article  CAS  Google Scholar 

  2. Hedrich, R., Flügge, U. I. & Fernandez, J. M. FEBS Lett. 3910, 228–232 (1986).

    Article  Google Scholar 

  3. Coyaud, L., Kurkdjian, A., Kado, R. & Hedrich, R. Biochim. biophys. Acta. (in the press).

  4. Kolb, H-A., Köhler, K. & Martinoia, E. J. Membrane Biol. 95, 163–169 (1987).

    Article  CAS  Google Scholar 

  5. Hepler, P. K. & Wayne, R. O. A. Rev. Pl. Physiol. 36, 397–439 (1985).

    Article  CAS  Google Scholar 

  6. Marme, D. & Dieter, P. in Calcium and Cell Function Vol. IV (ed. Cheung, W. Y.) 263–311 (Academic, New York, 1983).

    Google Scholar 

  7. Jones, R. L., Deikman, J. & Melroy, M. J. in Molecular and Cellular Aspects of Calcium in Plant Development (ed. Trewavas, A. J.) 175–183 (Plenum, New York, 1986).

    Google Scholar 

  8. Lunevsky, V. Z., Zherelova, O. M., Vostrikov, I. Y. & Berestovsky J. Membrane Biol. 72, 43–58 (1983).

    Article  Google Scholar 

  9. Mimura, T. & Tazawa, M. Protoplasma 118, 49–55 (1983).

    Article  CAS  Google Scholar 

  10. Hille, B. Ionic Channels of Excitable Membranes (Sinauer, Sunderland, Massachusetts, 1984).

    Google Scholar 

  11. Marty, A. Trends Neurosci. 6, 262–265 (1983).

    Article  CAS  Google Scholar 

  12. Miller, A. J. & Sanders, D. Nature 326, 397–400 (1987).

    Article  ADS  CAS  Google Scholar 

  13. Williamson, R. E. & Ashley, C. C. Nature 296, 647–651 (1982).

    Article  ADS  CAS  PubMed  Google Scholar 

  14. Brownless, C. &. Wood, J. W. Nature 320, 624–626 (1986).

    Article  ADS  Google Scholar 

  15. Bennett, A. B. & Spanswiek, R. M. Pl. Physiol. 74, 545–548 (1984).

    Article  CAS  Google Scholar 

  16. Gardeström, P. FEBS Lett. 4412, 114–118 (1987).

    Article  Google Scholar 

  17. Martinoia, E., Flügge, U. I., Kaiser, G., Heber, U. & Heldt, H. W. Biochim. biophys. Acta 806, 311–319 (1985).

    Article  CAS  Google Scholar 

  18. Gilroy, S., Hughes, W. A. & Trewavas, A. J. FEBS Lett. 4436, 133–137 (1987).

    Article  Google Scholar 

  19. Rincon, M. & Boss, W. F. Pl. Physiol. 83, 395–398 (1987).

    Article  CAS  Google Scholar 

  20. Schumaker, K. S. & Sze, H. J. biol. Chem. 262, 3944–3946 (1987).

    CAS  PubMed  Google Scholar 

  21. Morse, M. J., Crain, R. C. & Satter, R. L. Pl. Physiol 80, 486 (1986).

    Google Scholar 

  22. DeSilva, D. L. R., Hetherington, A. M., & Mansfield, T. A. New Phytol. 100, 473–483 (1985).

    Article  CAS  Google Scholar 

  23. DeSilva, D. L. R., Cox, R. C., Hetherington, A. M. & Mansfield, T. A. New Phytol. 101, 555–563 (1985).

    Article  CAS  Google Scholar 

  24. Schwartz, A. Pl. Physiol. 79, 1003–1005 (1985).

    Article  CAS  Google Scholar 

  25. Schnabl, H., Elbert, C. & Krämer, G. J. exp. Bot. 33, 996–1003 (1983).

    Article  Google Scholar 

  26. Gerhardt, R. & Heldt, H. W. Pl. Physiol. 75, 542–547 (1984).

    Article  CAS  Google Scholar 

  27. Lüttge, U. New Phytol. 105, 593–629 (1987).

    Article  Google Scholar 

  28. Martell, A. E. & Smith, R. M. Critical Stability Constants (Plenum, London, 1974).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hedrich, R., Neher, E. Cytoplasmic calcium regulates voltage-dependent ion channels in plant vacuoles . Nature 329, 833–836 (1987). https://doi.org/10.1038/329833a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/329833a0

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing