Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Thursday 19 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 326, 372 - 373 (26 March 1987); doi:10.1038/326372a0

Icosahedral symmetry versus local icosahedral environments in Al–Mn alloys from NMR

L. H. Bennett*, J. W. Cahn*, R. J. Schaefer*, M. Rubinstein & G. H. Stauss

*National Bureau of Standards, Gaithersburg, Maryland 20899, USA
Naval Research Laboratory, Washington DC 20375, USA

In a recent report1, Pauling suggested that the icosahedral diffraction found in the aluminium–manganese system is due to a cubic crystalline phase with a large unit cell of more than 1,000 atoms, multiply twinned to mimic icosahedral symmetry, instead of a crystalline or quasicrystalline phase with fivefold symmetry. Pauling claims that most of the manganese atoms are surrounded by twelve aluminium atoms arrayed in a nearly perfect icosahedron, a cluster that occurs in the Al12W structure. To account for the high Mn content in the icosahedral phase, he assumed that each aluminium atom was shared with a neighbouring icosahedron. Here, we report a comparison of the nuclear magnetic resonance (NMR) spectra obtained from aluminium–manganese alloys in the crystalline 'G' phase (in which each of the Mn atoms is surrounded by an icosahedron of Al atoms, exactly as in Pauling's proposal structure) with the spectra of the icosahedral phase. We find that the NMR spectrum in the 'G' phase is entirely different from the spectrum in the icosahedral phase. Twinning should not affect the NMR spectra except for a small contribution from atoms on or near the composition planes, so the Al–Mn icosahedral phase is not Pauling's twinned cubic structure.

------------------

References

1. Pauling, L. Nature 317, 512−514 (1985). | Article | ISI | ChemPort |
2. Little, K., Raynor, G. V. & Hume-Rothery, W. J. Inst. Metals 73, 83−90 (1946). | ChemPort |
3. Schaefer, R. J., Biancaniello, F. S. & Cahn, J. W. Scr. met. 20, 1439−1444 (1986). | Article | ChemPort |
4. Rubinstein, M., Stauss, G. H., Phillips, T. E., Moorjani, K. & Bennett, L. H. J. mater. Res. 1, 243−246 (1986). | ChemPort |
5. Warren, W. W., Jr, Chen, H. S. & Hauser, J. J. Phys. Rev. B32, 7614−7616 (1985). | ChemPort |
6. Swartzendruber, L. J., Shechtman, D., Bendersky, L. & Cahn, J. W. Phys. Rev. B 32, 1383−1385 (1985). | Article | ISI | ChemPort |
7. Eibschutz, M., Chen, H. S. & Hauser, J. J. Phys. Rev. Lett. 56, 169−172 (1986). | Article | ChemPort |
8. Elser, V. & Henley, C. L. Phys. Rev. Lett. 55, 2883−2886 (1985). | Article | PubMed | ISI | ChemPort |
9. Stern, E. A., Ma, Y. & Bouldin, C. E. Phys. Rev. Lett. 55, 2172−2175 (1985). | Article | PubMed | ChemPort |
10. Mackay, A. Acta crystalogr. 15, 916−918 (1962). | ChemPort |
11. Audier, M. & Guyot, P. Phil. Mag. 53, L43−L51 (1986). | ISI | ChemPort |
12. Kuriyama, M., Long, G. G. & Bendersky, L. Phys. Rev. Lett. 55, 849−851 (1985). | Article | PubMed | ChemPort |
13. Watson, R. E. & Weinert, M. Mater. Sci. Eng. 79, 105−109 (1986). | ChemPort |
14. Cahn, J. W. & Gratias, D. J. Phys. Colloq. C3, 415−424 (1986).



© 1987 Nature Publishing Group
Privacy Policy