Nature Publishing Group, publisher of Nature, and other science journals and reference works
Nature
my account e-alerts subscribe register
   
Sunday 22 October 2017
Journal Home
Current Issue
AOP
Archive
Download PDF
References
Export citation
Export references
Send to a friend
More articles like this

Letters to Nature
Nature 322, 808 - 811 (28 August 1986); doi:10.1038/322808a0

Nimbus 7 satellite measurements of the springtime Antarctic ozone  decrease

R. S. Stolarski, A. J. Krueger, M. R. Schoeberl, R. D. McPeters, P. A. Newman & J. C. Alpert*

NASA/Goddard Space Flight Center, Laboratory for Atmospheres, Greenbelt, Maryland 20771, USA
*Present address NOAA/NMC, Camp Springs, Maryland 20233, USA.

Farman et al. 1 have reported a rapid decrease, since their measurements started in 1957, of the total column amount of ozone in late winter and early spring over the Halley Bay station in Antarctica (76° S, 27° W). The decrease was most pronounced in October, early spring in the Southern Hemisphere. They attributed the decrease to the increase in stratospheric chlorine due to chloro-fluorocarbon release, and proposed that the unique conditions of extreme cold and low sunlight in the Antarctic winter and spring enhanced the effect. We report measurements from the Solar Backscatter Ultraviolet (SBUV) instrument and the Total Ozone Mapping Spectrometer (TOMS) aboard the Nimbus 7 satellite, a Sun-synchronous polar-orbiting satellite which passes any given point on the dayside near local noon. These provide global measurements of ozone from November 1978 to the present which confirm the reported decline of total ozone and show the phenomenon to be regional in extent. The decrease occurs during September as the Sun rises, reaching a minimum in mid-October. Seven years (1979–1985) of October monthly means show a 40% decrease in the ozone minimum and a 20% decrease in the surrounding ozone maximum.

------------------

References

1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207−210 (1985). | ISI | ChemPort |
2. Heath, D. F., Krueger, A. J., Roeder, H. A. & Henderson, B. D. Opt. Engng 14, 323−330 (1975).
3. Klenk, K. F. et al. J. appl Met. 21, 1672−1684 (1982). | Article | ISI | ChemPort |
4. Dave, J. V. J. atmos. Sci 35, 889−911 (1978). | Article |
5. Iwasaka, Y. et al. Middle Atmosphere Program Handbook, Vol. 18 (ed. Kato, S.) 450−452 (SCOSTEP Secretariat, Urbana, 1985).
6. McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P. & Swissler, T. J. J. atmos. Sci. 39, 1387−1397 (1982). | Article | ISI |
7. Sticksel, P. R. Mon. Weath. Rev. 98, 787−788 (1970). | ISI |
8. Hasebe, F. in Dynamics of the Middle Atmosphere(eds Holton, J. R. & Matsuno, T.) 445−464 (Terra Scientific, Tokyo, 1984).
9. Hilsenrath, E. & Schlesinger, B. M. J geophys. Res. 86, 12087−12096 (1981). | ChemPort |
10. Chubachi, S. in Atmospheric Ozone (eds Zerefos, C. S. & Ghazi, A.) (Reidel, Dordrecht, 1984).
11. Miller, A. J., Finger, F. G. & Gelman, M. E. NASA tech. Memo. No. TMX-2109 (Washington, DC, 1970).
12. Rood, R. B. Pure appl. Geophys. 121, 1049−1064 (1983). | ChemPort |
13. Solomon, S., Garcia, R. R., Rowland, F. S. & Wuebbles, D. J. Nature 321, 755−758 (1986). | Article | ISI | ChemPort |
14. McElroy, M. B., Salawitch, R. J., Wofsy, S. C. & Logan, J. A. Nature 321, 759−762 (1986). | Article | ISI | ChemPort |
15. Tung, K. K., Ko, M. K. W., Rodriguez, J. M. & Sze, N. D. Nature 322, 811 (1986). | Article | ISI | ChemPort |



© 1986 Nature Publishing Group
Privacy Policy