Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Mechanism of recognition of the 5′ splice site in self-splicing group I introns

Abstract

Group I introns include many mitochondrial ribosomal RNA and messenger RNA introns and the nuclear rRNA introns of Tetrahymena and Physarum1–6. The splicing of precursor RNAs containing these introns is a two-step reaction. Cleavage at the 5′ splice site precedes cleavage at the 3′ splice site, the latter cleavage being coupled with exon ligation7–9. Following the first cleavage, the 5′ exon must somehow be held in place for ligation. We have now tested the reactivity of two self-splicing group I RNAs, the Tetrahymena pre-rRNA and the intron 1 portion of the Neurospora mitochondrial cytochrome b (cob) pre-mRNA, in the inter-molecular exon ligation reaction (splicing in trans) described by Inoue et al.10. The different sequence specificity of the reactions supports the idea that the nucleotides immediately upstream from the 5′ splice site are base-paired to an internal, 5′ exon-binding site, in agreement with RNA structure models proposed by Davies and co-workers2,3 and others4,5,11. The internal binding site is proposed to be involved in the formation of a structure that specifies the 5′ splice site and, following the first step of splicing, to hold the 5′ exon in place for exon ligation.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Burke, J. & RajBhandary, U. L. Cell 31, 509–520 (1982).

    Article  CAS  Google Scholar 

  2. Davies, R. W., Waring, R. B., Ray, J. A., Brown, T. A. & Scazzocchio, C. Nature 300, 719–724 (1982).

    Article  ADS  CAS  Google Scholar 

  3. Waring, R. B., Scazzocchio, C., Brown, T. A. & Davies, R. W. J. molec. Biol 167, 595–605 (1983).

    Article  CAS  Google Scholar 

  4. Michel, F., Jacquier, A. & Dujon, B. Biochimie 64, 867–881 (1982).

    Article  CAS  Google Scholar 

  5. Michel, F. & Dujon, B. EMBO J. 2, 33–38 (1983).

    Article  CAS  Google Scholar 

  6. Cech, T. R. et al. Proc. natn. Acad. Sci. U.S.A. 80, 3903–3907 (1983).

    Article  ADS  CAS  Google Scholar 

  7. Zaug, A. J., Grabowski, P. J. & Cech, T. R. Nature 301, 578–583 (1983).

    Article  ADS  CAS  Google Scholar 

  8. Cech, T. R. Cell 44, 207–210 (1986).

    Article  CAS  Google Scholar 

  9. Inoue, T., Sullivan, F. X. & Cech, T. R. J. molec. biol. 189, 143–165 (1986).

    Article  CAS  Google Scholar 

  10. Inoue, T., Sullivan, F. X. & Cech, T. R. Cell 43, 431–437 (1985).

    Article  CAS  Google Scholar 

  11. Bos, J. L. et al. Cell 20, 207–214 (1980).

    Article  CAS  Google Scholar 

  12. Garriga, G. & Lambowitz, A. M. Cell 39, 631–641 (1984).

    Article  CAS  Google Scholar 

  13. Tabak, H. F. Van der Horst, G., Osinga, K. A. & Arnberg, A. C. Cell 39, 623–629 (1984).

    Article  CAS  Google Scholar 

  14. Hensgens, L. A. M., Bonen, L., de Haan, M., Van der Horst, G. & Grivell, L. A. Cell 32, 379–389 (1983).

    Article  CAS  Google Scholar 

  15. Van der Horst, G. & Tabak, H. F. Cell 40, 759–766 (1985).

    Article  CAS  Google Scholar 

  16. Sullivan, F. X. & Cech, T. R. Cell 42, 639–648 (1985).

    Article  CAS  Google Scholar 

  17. Helmer-Citterich, M., Morelli, G. & Macino, G. EMBO J. 2, 1235–1242 (1983).

    Article  CAS  Google Scholar 

  18. Burke, J. M., Breitenberger, C., Heckman, J. E., Dujon, B. & RajBhandary, U. L. J. biol. Chem. 259, 504–511 (1984).

    CAS  PubMed  Google Scholar 

  19. Bass, B. L. & Cech, T. R. Nature 308, 820–826 (1984).

    Article  ADS  CAS  Google Scholar 

  20. Price, J. V. & Cech, T. R. Science 228, 719–722 (1985).

    Article  ADS  CAS  Google Scholar 

  21. McMaster, G. K. & Carmichael, G. G. Proc. natn. Acad. Sci. U.S.A. 74, 4835–4838 (1977).

    Article  ADS  CAS  Google Scholar 

  22. Donis-Keller, H. Nucleic Acids Res. 7, 179–192 (1979).

    Article  CAS  Google Scholar 

  23. Lockard, R. E. et al. Nucleic Acids Res. 5, 37–56 (1978).

    Article  CAS  Google Scholar 

  24. Donis-Keller, H. Nucleic Acids Res. 8, 3133–3142 (1980).

    Article  CAS  Google Scholar 

  25. Been, M. D. & Cech, T. R. Nucleic Acids Res. 13, 8389–8408 (1985).

    Article  CAS  Google Scholar 

  26. Waring, R. B., Towner, P., Minter, S. J. & Davies, R. W. Nature 321, 133–139 (1986).

    Article  ADS  CAS  Google Scholar 

  27. Been, M. D. & Cech, T. R. (submitted).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Garriga, G., Lambowitz, A., Inoue, T. et al. Mechanism of recognition of the 5′ splice site in self-splicing group I introns. Nature 322, 86–89 (1986). https://doi.org/10.1038/322086a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/322086a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing