Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine

Abstract

The vertical column density of ozone observed in October over Antarctica has fallen precipitously over the past 10 yr. The concentration at Halley Bay (76° S 27° W), expressed conventionally in Dobson units (DU) (1 DU = 10−3 atmos. cm = 2.7×1016 molecules cm−2), has dropped from about 300 DU in 1975 to <200 DUin 1984 (ref. 1). Values in 1985 were even lower, comparable with the lowest values recorded anywhere on Earth2. We suggest here that the loss of O3 in Antarctica may be attributed to catalysis of O3 recombination by a scheme in which the rate-limiting step is defined by the reaction ClO+BrO→Cl+Br+O2. Concentrations of NO2 must be low and heterogenous reactions involving particles in the polar stratospheric clouds must be an important element of the relevant chemistry. Industrial sources make important contributions to the contemporary budgets of both BrO and ClO and are likely to grow significantly in the future.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Farman, J. C., Gardiner, B. G. & Shanklin, J. D. Nature 315, 207–210 (1985).

    Article  ADS  CAS  Google Scholar 

  2. Ozone data for the World, Indexes 6, 14 and 19 (Atmospheric Environment Service, Toronto, Canada, 1985).

  3. Stolarski, R. S. et al. Nimbus 7, SBUV/TOMS Measurement of Antarctica Ozone (submitted).

  4. Chubachi, S. Mem. natn. Inst. Pol. Res. (Tokyo), Spec. Iss. No. 34, 13–19 (1984).

  5. Molina, M. J. & Rowland, F. S. Nature 249, 810–812 (1974).

    Article  ADS  CAS  Google Scholar 

  6. Wofsy, S. C., McElroy, M. B. & Yung, Y. L. Geophys. Res. Lett. 2, 215–218 (1975).

    Article  ADS  CAS  Google Scholar 

  7. Crutzen, P. J. Q. Jl R. met. Soc. 96, 320–325 (1970).

    Article  ADS  Google Scholar 

  8. Johnston, H. S. Science 173, 517–522 (1971).

    Article  ADS  CAS  Google Scholar 

  9. Bates, D. R. & Nicolet, M. J. geophys. Res. 55, 301–327 (1950).

    Article  ADS  CAS  Google Scholar 

  10. Yung, Y. L., Pinto, J., Watson, R. T. & Sander, S. P. J. atmos. Sci. 37, 339–353 (1980).

    Article  ADS  CAS  Google Scholar 

  11. Noxon, J. F. Science 189, 547–549 (1975).

    Article  ADS  CAS  Google Scholar 

  12. Noxon, J. F. Geophys. Res. Lett. 5, 1021–1022 (1978).

    Article  ADS  CAS  Google Scholar 

  13. Noxon, J. F., Henderson, W. R. & Norton, R. B. J. geophys. Res. 88, 5240–5248 (1983).

    Article  ADS  CAS  Google Scholar 

  14. McKenzie, R. L. & Johnston, P. V. Geophys. Res. Lett. 11, 73–75 (1984).

    Article  ADS  CAS  Google Scholar 

  15. Wofsy, S. C. J. geophys. Res. 83, 364–378 (1978).

    Article  ADS  CAS  Google Scholar 

  16. Evans, W. J. F., McElroy, C. T. & Galbally, I. E. Geophys. Res. Lett. 12, 825–828 (1985).

    Article  ADS  CAS  Google Scholar 

  17. McCormick, M. P., Steele, H. M., Hamill, P., Chu, W. P. & Swissler, T. J. J. atmos. Sci. 39, 1387–1397 (1982).

    Article  ADS  Google Scholar 

  18. Steele, H. M., Hamill, P., McCormick, M. P. & Swissler, T. J. J. atmos. Sci. 40, 2055–2067 (1983).

    Article  ADS  Google Scholar 

  19. Rowland, F. S. Pap. at NASA Meet. Current Issues in our Understanding of the Stratopshere and the Future of the Ozone Layer (Feldafing, FRG, 1984).

    Google Scholar 

  20. Atkinson, R., Tuazon, E. C., MacLeod, H., Aschmann, S. M. & Winer, A. M. Geophys. Res. Lett. 13, 117–120 (1985).

    Article  ADS  Google Scholar 

  21. Molina, L. T., Molina, M. J., Stachnik, R. A. & Tom, R. D. J. phys. Chem. 89, 3779–3781 (1985).

    Article  CAS  Google Scholar 

  22. DeMore, W. B. et al. Chemical Kinetics and in Stratospheric Modelling Evaluation No. 7 (Jet Propulsion Laboratory, Pasadena, JPL 85–37, 1985).

    Google Scholar 

  23. List, R. J. & Telegadas, K. J. atmos. Sci. 26, 1128–1136 (1969).

    Article  ADS  Google Scholar 

  24. Telegadas, K. & List, R. J. Science 190, 882–883 (1975).

    Article  ADS  CAS  Google Scholar 

  25. Logan, J. A., Prather, M. J., Wofsy, S. C. & McElroy, M. B. Phil. Trans. R. Soc. 290, 187–234 (1978).

    Article  ADS  CAS  Google Scholar 

  26. Wofsy, S. C. & Logan, J. A. in Causes and Effects of Stratospheric Ozone Reduction: An Update, 167–205 (National Academy of Sciences, Washington DC, 1982).

    Google Scholar 

  27. Prather, M. J., McElroy, M. B. & Wofsy, S. C. Nature 312, 227–231 (1984).

    Article  ADS  CAS  Google Scholar 

  28. Tung, K. K., Ko, M. K. W., Rodriguez, J. M. & Sze, N. D. Nature (submitted).

  29. Hofman, D. J. & Rosen, J. M. Geophys. Res. Lett. 12, 13–16 (1985).

    Article  ADS  Google Scholar 

  30. WMO/ NASA Atmospheric Ozone: Assessment of our Understanding of the Processes Controlling its Present Distribution and Changes (in the press).

  31. Angell, J. K., Korshover, J. & Planet. W. G. Mon. Weath. Rev. 113, 641–646 (1985).

    Article  ADS  Google Scholar 

  32. Hofmann, D. J. & Rosen, J. M. J. geophys. Res. 89, 4883–4890 (1984).

    Article  ADS  CAS  Google Scholar 

  33. Mankin, W. G. & Coffey, M. T. Science 226, 170–172 (1984).

    Article  ADS  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

McElroy, M., Salawitch, R., Wofsy, S. et al. Reductions of Antarctic ozone due to synergistic interactions of chlorine and bromine. Nature 321, 759–762 (1986). https://doi.org/10.1038/321759a0

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/321759a0

This article is cited by

Comments

By submitting a comment you agree to abide by our Terms and Community Guidelines. If you find something abusive or that does not comply with our terms or guidelines please flag it as inappropriate.

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing